Skip to main content
Log in

The virtual distortion method—a versatile reanalysis tool for structures and systems

  • Review Article
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

For 20 years of development, the virtual distortion method (VDM) has proved to be a versatile reanalysis tool in various applications, including structures and truss-like systems. This article presents a summary of principal achievements, demonstrating the capabilities of the VDM both in statics and dynamics, in linear and nonlinear analysis. The major advantage of VDM is its exactness and no need for matrix inversion in the reanalysis algorithm. The influence matrix—numerical core of the VDM—contains the whole mechanical knowledge about a structure, by looking at all global responses due to local disturbances. The strength of the method is demonstrated for truss structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu Kassim AM, Topping BHV (1987) Static reanalysis: a review. J Struct Eng ASCE 113(6):1029–1045

    Article  Google Scholar 

  • Akgun MA, Garcelon JH, Haftka RT (2001) Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Numer Methods Eng 5:1587–1606

    Article  Google Scholar 

  • Argyris JH (1965) Elasto-plastic matrix displacement analysis of three-dimensional continua. J R Aeronaut Soc 69:633–636

    Google Scholar 

  • Bae H-R, Grandhi RV (2004) Successive matrix inversion method for reanalysis of engineering structural systems. AIAA J 42(8):1529–1535

    Article  Google Scholar 

  • Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum design—a review. Struct Optim 5:129–144

    Article  Google Scholar 

  • Cacciola P, Impollonia N, Muscolino G (2005) A dynamic reanalysis technique for general structural modifications under deterministic and stochastic input. Comput Struct 83:1076–1085

    Article  Google Scholar 

  • Chen H-P (2006) Efficient methods for determining modal parameters of dynamic structures with large modifications. J Sound Vib 298:462–470

    Article  Google Scholar 

  • Chen SH, Yang XW, Lian HD (2000) Comparison of several eigenvalue reanalysis methods for modified structures. Struct Multidisc Optim 20:253–259

    Article  Google Scholar 

  • Cronin DL (1990) Eigenvalue nad eigenvector determination for nonclassically damped dynamic systems. Comput Struct 36:133–138

    Article  MATH  MathSciNet  Google Scholar 

  • Cross H (1936) Analysis of flow in networks of conduits or conductors. Engineering Experiment Station bulletin no. 286. University of Illinois, Chicago, IL, USA.

    Google Scholar 

  • Di Paola M (2004) Probabilistic analysis of truss structures with uncertain parameters (virtual distortion method approach). Probab Eng Mech 19(4):321–329

    Article  Google Scholar 

  • Di Paola M, Pirrotta A, Zingales M (2004) Stochastic dynamics of linear elastic trusses in presence of structural uncertainties (virtual distortion approach). Probab Eng Mech 19(1–2): 41–51

    Article  Google Scholar 

  • Deng L, Ghosn M (2001) Pseudoforce method for nonlinear analysis and reanalysis of structural systems. J Struct Eng ASCE 127(5):570–578

    Article  Google Scholar 

  • Fox RL, Miura H (1971) An approximate analysis technique for design calculations. Technical note. AIAA J 9(1):177–179

    Article  Google Scholar 

  • Grissom MD, Belegundu AD, Koopmann GH (2005) A reduced eigenvalue method for broadband analysis of a structure with vibration absorbers possessing rotatory inertia. J Sound Vib 281:869–886

    Article  Google Scholar 

  • Holnicki-Szulc J (1991) Virtual distortion method. In: Lecture notes in engeneering, no.65. Springer, Heidelberg-Berlin

    Google Scholar 

  • Holnicki-Szulc J, Bielecki T (2000) Virtual distortion method—review. Applications to fast redesign and sensitivity analysis. Int J Nonlinear Sci & Numer Simul 1(2):71–98

    MATH  Google Scholar 

  • Holnicki-Szulc J, Gierlinski J (1989) Structural modifications simulated by virtual distortions. Int J Numer Methods Eng 28:645–666

    Article  MATH  Google Scholar 

  • Holnicki-Szulc J, Gierlinski JT (1995) Structural analysis, design and control by the virtual distortion method. Wiley, Chichester, UK

    Google Scholar 

  • Holnicki J, Knap L (2004) Adaptive crashworthiness concept. Int J Impact Eng 30(6):639–663

    Article  Google Scholar 

  • Holnicki-Szulc J, Mackiewicz A, Kolakowski P (1998) Design of adaptive structures for improved load capacity. AIAA J 36(3):471–476

    Google Scholar 

  • Holnicki-Szulc J, Pawlowski P, Wiklo M (2003) High-performance impact absorbing materials—the concept, design tools and applications. Smart Mater Struct 12(2003):461–467

    Article  Google Scholar 

  • Holnicki-Szulc J, Kolakowski P, Nasher N (2005) Leakage detection in water networks. J Intell Mater Syst Struct 16(3):207–219

    Article  Google Scholar 

  • Huang C, Chen S-H, Liu Z (2000) Structural modal reanalysis for topological modifications of finite element systems. Eng Struct 22:304–310

    Article  Google Scholar 

  • Hurtado JE (2002) Reanalysis of linear and nonlinear structures using iterated shanks transformation. Comput Methods Appl Mech Eng 191:4215–4229

    Article  Google Scholar 

  • Jankowski L, Wiklo M (2006) A posteriori impact identification. In: Proceedings of the 3rd European workshop on structural health monitoring, 5–7 July 2006. Granada, Spain, pp 675–682

  • Kirsch U (2003) A unified reanalysis approach for structural analysis, design and optimization. Struct Multidisc Optim 25:67–85

    Article  Google Scholar 

  • Kirsch U, Liu S (1995) Exact structural reanalysis by a first-order reduced basis approach. Struct Optim 10:153–158

    Article  Google Scholar 

  • Kirsch U, Bogomolni M, Sheinman I (2006) Nonlinear dynamic reanalysis of structures by combined approximations. Comput Methods Appl Mech Eng 195:4420–4432

    Article  MATH  Google Scholar 

  • Kokot M, Holnicki-Szulc J (2005) Health monitoring of electric circuits. In: Proceedings of the 6th international conference on damage assessment of structures—DAMAS 2005, 4–6 July, 2005, Gdansk, Poland, pp 669–676

  • Kokot M, Holnicki-Szulc J (2006) SHM concept applied to dynamical defect identification in electrical circuits. In: Proceedings of the 3rd European workshop on structural health monitoring, 5–7 July 2006. Granada, Spain, pp 1111–1118

  • Kolakowski P, Holnicki-Szulc J (1997) Optimal remodelling of truss structures—simulation by virtual distortions. Comput Assist Mech Eng Sci 4(2):257–281

    MATH  Google Scholar 

  • Kolakowski P, Holnicki-Szulc J (1998) Sensitivity analysis of truss structures—virtual distortion method approach. Int J Numer Methods Eng 43(6):1085–1108

    Article  MATH  Google Scholar 

  • Kolakowski P, Zielinski TG, Holnicki-Szulc J (2004) Damage identification by the dynamic virtual distortion method. J Intell Mater Syst Struct 15(6):479–493

    Article  Google Scholar 

  • Kolakowski P, Mujica LE, Vehi J (2006) Two approaches to structural damage identification: model updating vs. soft computing. J Intell Mater Syst Struct 17(1):63–79

    Article  Google Scholar 

  • Kroner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. In: Collatz L., Lösch F. (eds) Ergebnisse der Angewandte Mathematik, vol. 5. Springer, Berlin (in German)

    Google Scholar 

  • Leu L-J, Tsou C-H (2000) Applications of a reduction method for reanalysis to nonlinear dynamic analysis of framed structures. Comput Mech 26:497–505

    Article  MATH  Google Scholar 

  • Lind NC (1962) Analysis of structures by system theory. J Struct Div ASCE 88:ST2 (Apr)

    Google Scholar 

  • Maier G (1970) A matrix structural theory of piecewise-linear plasticity with interacting yield planes. Meccanica 7:51–66

    Google Scholar 

  • Majid KI, Celik T (1985) The elastic-plastic analysis of frames by the theorems of structural variation. Int J Numer Methods Eng 21:671–681

    Article  MATH  Google Scholar 

  • Majid KI, Elliott DWC (1973) Forces and deflections in changing structures. Struct Eng 51:93–101

    Google Scholar 

  • Makode PV, Ramirez MR, Corotis RB (1996) Reanalysis of rigid frame structures by the virtual distortion method. Struct Multidisc Optim 11(1–2):71–79

    Google Scholar 

  • Makode PV, Corotis RB, Ramirez MR (1999) Non-linear analysis of frame structures by pseudodistortions. J Struct Eng ASCE 125(11):1309–1327

    Article  Google Scholar 

  • Muscolino G (1996) Dynamically modified linear structures: deterministic and stochastic response. J Eng Mech ASCE 122(11):1044–1051

    Article  Google Scholar 

  • Noor AK, Lowder HE (1974) Approximate techniques of structural reanalysis. Comput Struct 4:801–812

    Article  Google Scholar 

  • Nowacki W (1970) Teoria sprezystosci. PWN, Warsaw (in Polish)

    Google Scholar 

  • Putresza JT, Kolakowski P (2001) Sensitivity analysis of frame structures—virtual distortion method approach. Int J Numer Methods Eng 50(6):1307–1329

    Article  MATH  Google Scholar 

  • Ravi SSA, Kundra TK, Nakra BC (1998) Reanalysis of damped structures using the single step perturbation method. J Sound Vib 211(3):355–363

    Article  Google Scholar 

  • Saka MP (1998) The theorems of structural variation for solid cubic finite elements. Comput Struct 68:89–100

    Article  MATH  Google Scholar 

  • Sherman J, Morrison WJ (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Stat 20:621

    Google Scholar 

  • Swiercz A, Kolakowski P, Holnicki J (2006) Identification of damage using low-frequency harmonics in trusses and beams. In: Proceedings of the international conference on noise and vibration engineering, ISMA2006, CD-ROM edition, 18–20 September 2006. Leuven, Belgium, pp 2137–2144

  • Tang J, Wang W-L (1996) Structural reanalysis in configuration space by perturbation approach: a real mode method. Comput Struct 58(4):739–746

    Article  MATH  MathSciNet  Google Scholar 

  • Topping BHV, Kassim AMA (1987) The use and efficiency of the theorems of structural variation for finite element analysis. Int J Numer Methods Eng 24:1900–1920

    Article  Google Scholar 

  • Woodbury M (1950) Inverting modified matrices. Memorandum report 42. Statistical Research Group, Princeton University, NJ, USA

    Google Scholar 

  • Yap KC, Zimmermann DC (2002) A comparative study of structural dynamic modification and sensitivity method approximation. Mech Syst Signal Process 16(4):585–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Kołakowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kołakowski, P., Wikło, M. & Holnicki-Szulc, J. The virtual distortion method—a versatile reanalysis tool for structures and systems. Struct Multidisc Optim 36, 217–234 (2008). https://doi.org/10.1007/s00158-007-0158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0158-7

Keywords

Navigation