Skip to main content
Log in

Topology optimization for transient wave propagation problems in one dimension

Design of filters and pulse modulators

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Structures exhibiting band gap properties, i.e., having frequency ranges for which the structure attenuates propagating waves, have applications in damping of acoustic and elastic wave propagation and in optical communication. A topology optimization method for synthesis of such structures, employing a time domain formulation, is developed. The method is extended to synthesis of pulse converting structures with possible applications in optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Francfort GA (1993) A numerical algorithm for topology and shape optimization. In: Bendsøe MP, Soares CAM (eds) Topology optimization of structures. Klüwer, pp 239–248

  • Bendsøe MP, Sigmund O (2003) Topology Optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Burger M, Osher S, Yablonovitch E (2004) Inverse problem techniques for the design of photonic crystals. IEICE Trans Electron E87-C(3):258–265

    Google Scholar 

  • Chung YS, Cheon C, Hahn SY (2000) Reconstruction of dielectric cylinders using FDTD and topology optimization technique. IEEE Trans Magn 36(4):956–959

    Article  Google Scholar 

  • Cox SJ, Dobson DC (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 59(6): 2108–2120

    Article  MATH  MathSciNet  Google Scholar 

  • Frey WR, Tortorelli DA, Johnson HT (2005) Topology optimization of a photonic crystal waveguide termination to maximize directional emission. Appl Phys Lett 86(11):111–114

    Google Scholar 

  • Halkjær S, Sigmund O, Jensen JS (2005) Inverse design of phononic crystals by topology optimization. Z Kristallogr 220(9–10):895–905

    Article  Google Scholar 

  • Halkjær S, Sigmund O, Jensen JS (2006) Maximizing band gaps in plate structures. Struct Multidisc Optim 32(4):263–275

    Article  Google Scholar 

  • Haug E, Arora J (1978) Design sensitivity analysis of elastic mechanical systems. Comput Methods Appl Mech Eng 15(1):35–62

    Article  MATH  Google Scholar 

  • Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidisc Optim 31(1):60–75

    Article  Google Scholar 

  • Jensen JS (2007) Topology optimization of dynamics problems with Padé approximants. Int J Numer Methods Eng doi:10.1002/nme.2065

  • Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198

    Article  Google Scholar 

  • Li Y, Saitou K, Kikuchi N (2004) Topology optimization of thermally actuated compliant mechanisms considering time-transient effect. Finite Elem Anal Des 40(11):1317–1331

    Article  Google Scholar 

  • Michaleris P, Tortorelli DA, Vidal C (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications in elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499

    Article  MATH  Google Scholar 

  • Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296

    Article  Google Scholar 

  • Pedersen C (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678

    Article  MATH  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans Royal Soc Math Phys Eng Sci 361:1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Smith FG, King TA (2000) Optics and photonics—an introduction. Wiley

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Model 24:359–373

    MATH  MathSciNet  Google Scholar 

  • Tsuji Y, Hirayama K, Nomura T, Sato K, Nishiwaki S (2006) Design of optical circuit devices based on topology optimization. IEEE photonics Technol Lett 18(5–8):850–852

    Article  Google Scholar 

  • Turteltaub S (2001) Optimal material properties for transient problems. Struct Multidisc Optim 22(2):157–166

    Article  MathSciNet  Google Scholar 

  • Turteltaub S (2005) Optimal non-homogeneous composites for dynamic loading. Struct Multidisc Optim 30(2):101–112

    Article  MathSciNet  Google Scholar 

  • Zwyssig C, Kolar J (2006) Design considerations and experimental results of a 100 W, 500 000 rpm electrical generator. J Micromechanics Microengineering 16:297–302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Dahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, J., Jensen, J.S. & Sigmund, O. Topology optimization for transient wave propagation problems in one dimension. Struct Multidisc Optim 36, 585–595 (2008). https://doi.org/10.1007/s00158-007-0192-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0192-5

Keywords

Navigation