Skip to main content
Log in

Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A method for topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method is presented in this paper. The focus of this paper is on how to prevent generating the flexible hinges during the process of topology optimization of compliant mechanisms. In the proposed method, two types of mean compliances are introduced and built in the proposed multi-objective function for topology optimization of hinge-free compliant mechanisms with multiple outputs, therefore, the spring model widely used for topology optimization of compliant mechanisms is no longer needed. Some numerical examples are presented to illustrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alexandrov O, Santosa F (2005) A topology-preserving level set method for shape optimization. J Comput Phys 204(1):121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Chen SK (2007) Compliant mechanisms with distributed compliance and characteristic stiffness: a level set method. PhD thesis, The Chinese University of HongKong, China

  • Chen SK, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput-Aided Des 40:951–962

    Article  MathSciNet  Google Scholar 

  • Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer

  • Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1:1–8

    Google Scholar 

  • Frecker M, Kikuchi N, Kota S (1999) Topological optimization of compliant mechanisms with multiple outputs. Struct Optim 17(4):269–278

    Article  Google Scholar 

  • Frecker MI, Ananthasuresh GK, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119(2):238–245

    Article  Google Scholar 

  • Ha SH, Cho S (2008) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86:1447–1455

    Article  Google Scholar 

  • Howell LL (2001) Compliant mechanisms. Wiley

  • Kim JE, Kim YY, Min S (2005) A note on hinge-free topology design using the special triangulation of design elements. Commun Numer Methods Eng 21(12):701–710

    Article  MATH  Google Scholar 

  • Krause R, Mohr C (2011) Level set based multi-scale methods for large deformation contact problems. Appl Numer Math 61:428–442

    Article  MathSciNet  MATH  Google Scholar 

  • Luo JZ, Luo Z, Chen SK, Tong LY, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198:318–331

    Article  MATH  Google Scholar 

  • Masters ND, Howell LL (2006) A three degree-of-freedom model for self-retracting fully compliant bistable micromechanisms. J Mech Des 127(4):739–744

    Article  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer

  • Osher S, Santosa F (2001) Level-set methods for optimization problem involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683–2705

    Article  MATH  Google Scholar 

  • Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmatalla S, Swan CC (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Methods Eng 62(12):1579–1605

    Article  MATH  Google Scholar 

  • Saxena A (2005) Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct Multidisc Optim 30:477–490

    Article  Google Scholar 

  • Sethain JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer version, and material science. Cambridge University Press

  • Sethian JA, Wiengmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sokolowski J, Zolesio JP (1992) Introduction to shape optimization: shape sensitivity analysis. Springer

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  • Ta’asan S (2001) Introduction to shape design and control. URL: http://www.math.cmu.edu/ shlomo/VKI-Lectures/lecture1/index.html

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • Tian Y, Shirinzadeh B, Zhang D, Zhong Y (2010) Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis. Precis Eng 34(1):92–100

    Article  Google Scholar 

  • Wang M, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  • Wang MY, Chen SK (2009) Compliant mechanism optimization: analysis and design with intrinsic characteristic stiffness. Mech Des Struct Mach 37(2):183–200

    Article  Google Scholar 

  • Yoon GH, Kin YY, Bendsøe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidisc Optim 27(3):139–150

    Article  Google Scholar 

  • Zhang X, Ouyang G, Wang H (2007) Topology optimization of multiple inputs and multiple outputs compliant mechanisms. Chin J Mech Eng 20(1):82–85

    Article  MATH  Google Scholar 

  • Zhou H (2010) Topology optimization of compliant mechanisms using hybrid discretization model. J Mech Des 132(11):111003–111010

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation for distinguished young scholars of China (Grant No. 50825504), the United Fund of Natural Science Foundation of China and Guangdong province (Grant No. U0934004), the Fundamental Research Funds for the Central Universities(2012ZP0004), and Project GDUPS (2010). This support is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Zhang, X. & Wang, N. Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method. Struct Multidisc Optim 47, 659–672 (2013). https://doi.org/10.1007/s00158-012-0841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0841-1

Keywords

Navigation