Skip to main content
Log in

A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Engineering design problems often involve non-linear criterion functions, including inequality and equality constraints, and a mixture of discrete and continuous design variables. Optimization approaches entail substantial challenges when solving such an all-inclusive design problem. In this paper, a modification of the Particle Swarm Optimization (PSO) algorithm is presented, which can adequately address system constraints while dealing with mixed-discrete variables. Continuous search (particle motion), as in conventional PSO, is implemented as the primary search strategy; subsequently, the discrete variables are updated using a deterministic nearest-feasible-vertex criterion. This approach is expected to alleviate the undesirable difference in the rates of evolution of discrete and continuous variables. The premature stagnation of candidate solutions (particles) due to loss of diversity is known to be one of the primary drawbacks of the basic PSO dynamics. To address this issue in high dimensional design problems, a new adaptive diversity-preservation technique is developed. This technique characterizes the population diversity at each iteration. The estimated diversity measure is then used to apply (i) a dynamic repulsion away from the best global solution in the case of continuous variables, and (ii) a stochastic update of the discrete variables. For performance validation, the Mixed-Discrete PSO algorithm is applied to a wide variety of standard test problems: (i) a set of 9 unconstrained problems, and (ii) a comprehensive set of 98 Mixed-Integer Nonlinear Programming (MINLP) problems. We also explore the applicability of this algorithm to a large scale engineering design problem—-wind farm layout optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484

    Article  MathSciNet  MATH  Google Scholar 

  • Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer HG, Lange B, Waldl HP (1996) Modelling tools for wind farm upgrading. In: European union wind energy conference. AIAA, Goborg, Sweden

  • Blackwell TM, Bentley P (2002) Don’t push me! Collision avoiding swarms, vol 2. In: 2002 IEEE congress on evolutionary computation. IEEE Computer Society, Honolulu, HI

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems, 1st edn. Oxford University Press, Cary, NC

    MATH  Google Scholar 

  • Bussieck MR, Drud AS, Meeraus A (2007) Minlplib—a collection of test models for mixed-integer nonlinear programming. Tech Rep, GAMS Development Corp, Washington, DC 20007, USA

  • Cabrera JF, Coello CAC (2007) Handling constraints in particle swarm optimization using a small population size. In: 7th Mexican international conference on artificial intelligence: advances in artificial intelligence. SMIA, Aguascalientes, Mexico, pp 41–51

  • Chowdhury S, Dulikravich GS (2010) Improvements to single-objective constrained predator–prey evolutionary optimization algorithm. Struct Multidisc Optim 41(4):541–554

    Article  MathSciNet  Google Scholar 

  • Chowdhury S, Dulikravich GS, Moral RJ (2009) Modified predator–prey algorithm for constrained and unconstrained multi-objective optimisation. Int J Math Model Numer Optim 1(1/2):1–38

    MATH  Google Scholar 

  • Chowdhury S, Messac A, Khire R (2010a) Developing a non-gradient based mixed-discrete optimization approach for comprehensive product platform planning (cp3). In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference. AIAA, Fort Worth, TX

  • Chowdhury S, Zhang J, Messac A, Castillo L (2010b) Exploring key factors influencing optimal farm design using mixed-discrete particle swarm optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference. AIAA, Fort Worth, TX

  • Chowdhury S, Messac A, Khire R (2011) Comprehensive product platform planning (cp3) framework. ASME J Mech Des (special issue on Designing Complex Engineered Systems) 133(10):101004

    Article  Google Scholar 

  • Chowdhury S, Zhang J, Messac A, Castillo L (2012) Unrestricted wind farm layout optimization (UWFLO): investigating key factors influencing the maximum power generation. Renew Energy 38(1):16–30

    Article  Google Scholar 

  • CMU, IBM (2010) CMU-IBM Cyber-infrastructure for MINLP. http://www.minlp.org/index.php. Accessed 1 Dec 2010

  • Corne D, Dorigo M, Glover F (1999) New ideas in optimisation (Advanced topics in computer science). McGraw-Hill, New York City, NY

    Google Scholar 

  • Deb K (2009) Multi-Objective optimization using evolutionary algorithms. Wiley, Chichester, UK

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: Nsga-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • GamsWorld (2010) MINLP World. http://www.gamsworld.org/minlp/index.htm. Accessed 1 Dec 2010

  • GE-Energy (2009) 1.5 mw wind turbine. http://www.ge-energy.com/products and services/products/windturbines/index.jsp. Accessed 1 Dec 2009

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1st edn. Addison-Wesley Professional, USA

    MATH  Google Scholar 

  • Gonzalez JS, Rodriguez AGG, Mora JC, Santos JR, Payan MB (2010) Optimization of wind farm turbines layout using an evolutive algorithm. Renew Energy 35(8):1671–1681

    Article  Google Scholar 

  • Grady SA, Hussaini MY, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renew Energy 30(2):259–270

    Article  Google Scholar 

  • Hu X, Eberhart RC (2002) Solving constrained nonlinear optimization problems with particle swarm optimization. In: Sixth world multiconference on systemics, cybernetics and informatics (SCI), Orlando, FL, USA

  • Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comput 195:299–308

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: IEEE international conference on neural networks. IEEE, Piscataway, NJ, USA, IV, pp 1942–1948

  • Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on in systems, man, and cybernetics, vol 5. IEEE, pp 4104–4108

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence, 1st edn. Morgan Kaufmann, USA

    Google Scholar 

  • Kitayama S, Arakawa M, Yamazaki K (2006) Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization. Struct Multidisc Optim 32:191–202

    Article  MathSciNet  MATH  Google Scholar 

  • Krink T, Vesterstrom JS, Riget J (2002) Particle swarm optimisation with spatial particle extension. In: 2002 IEEE congress on evolutionary computation, vol 2. IEEE Computer Society, Honolulu, HI

    Google Scholar 

  • Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: IEEE 2002 congress on evolutionary computation. IEEE, Hawaii, USA

    Google Scholar 

  • Miele A, Cantrell JW (1969) Study on a memory gradient method for the minimization of functions. J Optim Theory Appl 3(6):459–470

    Article  MathSciNet  MATH  Google Scholar 

  • Mikkelsen R, Sorensen JN, Oye S, Troldborg N (2007) Analysis of power enhancement for a row of wind turbines using the actuator line technique. J Phys 75(1)

  • Murugan P, Kannan S, Baskar S (2009) Application of NSGA-II algorithm to single-objective transmission constrained generation expansion planning. IEEE Trans Power Syst 24(4):1790–1797

    Article  Google Scholar 

  • Nakamichi Y, Arita T (2004) Diversity control in ant colony optimization. Artif Life Robot 7(4):198–204

    Article  Google Scholar 

  • NDSU (2010) North Dakota agricultural weather network. http://ndawn.ndsu.nodak.edu/. Accessed 1 Dec 2010

  • Parsopoulos KE, Vrahatis MN (2002) Particle swarm method for constrained optimization problems. In: Euro-international symposium on computational intelligence, Kosice, Slovakia

  • Pohlheim H (2010) GEATbx: example functions (single and multi-objective functions) 2 parametric optimization

  • Ponsich A, Azzaro-Pantel C, Domenech S, Pibouleau L (2007) Mixed-integer nonlinear programming optimization strategies for batch plant design problems. Ind Eng Chem Res 46(3):854–863

    Article  Google Scholar 

  • Ponsich A, Azzaro-Pantel C, Domenech S, Pibouleau L (2008) Mixed-integer nonlinear programming optimization strategies for batch plant design problems. Chem Eng Process 47:420–434

    Article  Google Scholar 

  • Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchial particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  • Riget J, Vesterstrom JS (2002) A diversity-guided particle swarm optimizer—the arpso. Tech Rep 2002-02, EVALife Project Group, Department of Computer Science, Aarhus Universitet

  • Schittkowski K (2009) A collection of 100 test problems for nonlinear mixed-integer programming in fortran: user’s guide. Department of Computer Science, University of Bayreuth, Bayreuth, Germany

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Evolutionary programming VII. New York, USA, pp 591–600

  • Silva A, Neves A, Costa E (2002) An empirical comparison of particle swarm and predator prey optimization. In: 13th Irish International conference on artificial intelligence and cognitive science, Limerick, Ireland, vol 2464, pp 103–110

  • Singh G, Grandhi RV, Stargel DS (2010) Modified particle swarm optimization for a multimodal mixed-variable laser peening process. Struct Multidisc Optim 42:769–782

    Article  Google Scholar 

  • Sisbot S, Turgut O, Tunc M, Camdali U (2010) Optimal positioning of wind turbines on gokceada using multi-objective genetic algorithm. Wind Energy 13(4):297–306

    Article  Google Scholar 

  • Sobol M (1976) Uniformly distributed sequences with an additional uniform property. USSR Comput Math Math Phys 16:236–242

    Article  MathSciNet  Google Scholar 

  • Sorensen P, Nielsen T (2006) Recalibrating wind turbine wake model parameters—validating the wake model performance for large offshore wind farms. In: European wind energy conference and exhibition, EWEA, Athens, Greece

  • Tasgetiren MF, Suganthan PN, Pan QQ (2007) A discrete particle swarm optimization algorithm for the generalized traveling salesman problem. In: 9th annual conference on genetic and evolutionary computation (GECCO). SIGEVO and ACM, London, UK, pp 158–167

  • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    Article  MathSciNet  MATH  Google Scholar 

  • Venter G, Haftka RT (2009) Constrained particle swarm optimization using a bi-objective formulation. Struct Multidisc Optim 40:65–76

    Article  MathSciNet  Google Scholar 

  • Wang Y, Cai Z, Zhou Y (2009) Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization. Int J Numer Methods Eng 77:1501–1534

    Article  MathSciNet  MATH  Google Scholar 

  • Xie XF, Yang WJZZL (2002) A dissipative particle swarm optimization. In: 2002 IEEE congress on evolutionary computation, vol 2. IEEE Computer Society, Honolulu, HI, pp 1456–1461

  • Zavala AEM, Diharce ERV, Aguirre AH (2005) Particle evolutionary swarm for design reliability optimization, vol 3410. In: Evolutionary multi-criterion optimization: third international conference, EMO 2005. Springer, Guanajuato, Mexico, pp 856–869

    Chapter  Google Scholar 

  • Zhang W, Li H, Zhao Q, Wang H (2009) Guidelines for parameter selection in particle swarm optimization according to control theory. In: Fifth international conference on natural computation. IEEE, Tianjin, China

    Google Scholar 

  • Zhang J, Chowdhury S, Messac A, Castillo L (2013) A multivariate and multimodal wind distribution model. Renewable Energy 51:436–447

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation Awards CMMI-1100948, and CMMI-0946765 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Messac.

Additional information

Parts of this manuscript have been presented at the 53rd AIAA Structures, Structural Dynamics and Materials Conference, in April, 2012, at Honolulu, Hawaii - Paper Number: AIAA 2012-1678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, S., Tong, W., Messac, A. et al. A mixed-discrete Particle Swarm Optimization algorithm with explicit diversity-preservation. Struct Multidisc Optim 47, 367–388 (2013). https://doi.org/10.1007/s00158-012-0851-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0851-z

Keywords

Navigation