Skip to main content
Log in

A multi-objective method of hinge-free compliant mechanism optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A new multi-objective formulation for topology synthesis of hinge-free compliant mechanisms is presented based on the SIMP method. A weighted sum formed objective function is developed by taking into consideration the input and output mean compliances. The weighting factors are set based on the information that is obtained from the previous iteration and automatically updated with each optimization iteration step. Shape sensitivity analysis is addressed. Some numerical examples are presented to illustrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum structural design-a review. Struct Multidiscip Optim 5(3):129–144

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer

  • Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):351–385

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Chen SK (2007) Compliant mechanisms with distributed compliance and characteristic stiffness: a level set method. PhD thesis. The Chinese University of HongKong, China

  • Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1:1–8

    Article  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MATH  Google Scholar 

  • Frecker M, Kikuchi N, Kota S (1999) Topological optimization of compliant mechanisms with multiple outputs. Struct Optim 17(4):269–278

    Article  Google Scholar 

  • Frecker MI, Ananthasuresh GK, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119(2):238–245

    Article  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  Google Scholar 

  • Howell LL (2001) Compliant Mechanisms. Wiley, New York

    Google Scholar 

  • Kim JE, Kim YY, Min S (2005) A note on hinge-free topology design using the special triangulation of design elements. Commun Nemerical Methods Eng 21(12):701–710

    Article  MATH  Google Scholar 

  • Luo JZ, Luo Z, Chen SK, Tong LY, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Engrg 198:318–331

    Article  MATH  Google Scholar 

  • Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidiscip Optim 30(13):142–154

    Article  Google Scholar 

  • Nishiwaki S, Min S, Yoo Jetal (2001) Optimal structural design considering flexibility. Comput Methods Appl Mech Eng 190(34):4457–4504

    Article  MathSciNet  Google Scholar 

  • Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Anal Methods Eng 57(6):741–760

    Article  MATH  MathSciNet  Google Scholar 

  • Rahmatalla S, Swan CC (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Anal Methods Eng 62(12):1579–1605

    Article  MATH  Google Scholar 

  • Saxena A, Ananthasuresh G (2000) On an optimal property of compliant topologies. Struct Multidiscip Optim 19(1):36–49

    Article  Google Scholar 

  • Sigmund O (1997) On the desgn of compliant mechanisms using topology optimization. Mech Struct Mach Int J 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424

    Article  Google Scholar 

  • Wang M, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    Article  MATH  Google Scholar 

  • Wang MY (2009) A kinetoelastic formulation of compliant mechanism optimization. J Mech Robot 1(2):021,011

    Article  Google Scholar 

  • Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938

    Article  MATH  Google Scholar 

  • Wang NF, Zhang XM (2012) Compliant mechanisms design based on pairs of curves. Sci China Technol Sci 55(8):2099–2106

    Article  Google Scholar 

  • Yin L, Ananthasuresh GK (2003) Design of distributed compliant mechanisms. Mechan Based Des Struct Mach 31(2):151–179

    Article  Google Scholar 

  • Yoon GH, Kin YY, Bendsøe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidiscip Optim 27(3):139–150

    Article  Google Scholar 

  • Zhou H (2010) Topology optimization of compliant mechanisms using hybrid discretization model. J Mech Des 132(11):111,003–111,010

    Article  Google Scholar 

  • Zhu B, Zhang X (2012) A new level set method for topology optimization of distributed compliant mechanisms. Int J Numer Methods Eng 91(8):843–871

    Article  Google Scholar 

  • Zhu B, Zhang X, Wang N (2013) Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method. Struct Multidiscip Optim 47(5):659–672

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (Grant No. 91223201, 50825504), the United Fund of Natural Science Foundation of China and Guangdong province (Grant No. U0934004), Project GDUPS (2010), and the Fundamental Research Funds for the Central Universities (2012ZP0004). This support is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Zhang, X. & Fatikow, S. A multi-objective method of hinge-free compliant mechanism optimization. Struct Multidisc Optim 49, 431–440 (2014). https://doi.org/10.1007/s00158-013-1003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1003-9

Keywords

Navigation