Skip to main content
Log in

A level-set-based topology and shape optimization method for continuum structure under geometric constraints

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Recent advances in level-set-based shape and topology optimization rely on free-form implicit representations to support boundary deformations and topological changes. In practice, a continuum structure is usually designed to meet parametric shape optimization, which is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. In order to solve the disadvantage of traditional step-type structural optimization, a unified optimization method which can fulfill the structural topology, shape, and sizing optimization at the same time is presented. The unified structural optimization model is described by a parameterized level set function that applies compactly supported radial basis functions (CS-RBFs) with favorable smoothness and accuracy for interpolation. The expansion coefficients of the interpolation function are treated as the design variables, which reflect the structural performance impacts of the topology, shape, and geometric constraints. Accordingly, the original topological shape optimization problem under geometric constraint is fully transformed into a simple parameter optimization problem; in other words, the optimization contains the expansion coefficients of the interpolation function in terms of limited design variables. This parameterization transforms the difficult shape and topology optimization problems with geometric constraints into a relatively straightforward parameterized problem to which many gradient-based optimization techniques can be applied. More specifically, the extended finite element method (XFEM) is adopted to improve the accuracy of boundary resolution. At last, combined with the optimality criteria method, several numerical examples are presented to demonstrate the applicability and potential of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, De Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59

    MATH  MathSciNet  Google Scholar 

  • Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056

    Article  MATH  Google Scholar 

  • Bajaj C (1997) Introduction to implicit surfaces. Morgan Kaufmann Publishers, Los Altos

    MATH  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003a) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  • Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003b) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635

    Article  MATH  Google Scholar 

  • Belytschko T, Xiao S, Parimi C (2003c) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196

    Article  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, New York

    Book  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MATH  MathSciNet  Google Scholar 

  • Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347

    Article  MATH  MathSciNet  Google Scholar 

  • Chen JQ, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346

    Article  MATH  MathSciNet  Google Scholar 

  • Kansa E, Power H, Fasshauer G, Ling L (2004) A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation, Eng Anal Bound Elem 28(10):1191–1206

    Article  MATH  Google Scholar 

  • Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MATH  MathSciNet  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519

    Article  MATH  Google Scholar 

  • Liu X, Xiao Q, Karihaloo B (2004) XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi - materials. Int J Numer Methods Eng 59(8):1103–1118

    Article  MATH  Google Scholar 

  • Luo Z, Tong L (2008) A level set method for shape and topology optimization of large - displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidiscip Optim 30(2):142–154

    Article  Google Scholar 

  • Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z, Yang J, Chen L (2006) A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures. Aerosp Sci Technol 10(5):364–373

    Article  MATH  Google Scholar 

  • Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87

    Article  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Osher S (2003) Geometric level set methods in imaging, vision, and graphics. Springer, New York

    MATH  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density in homogeneous drum. J Comput Phys 171(1):272–288

    Article  MATH  MathSciNet  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2007) Application of a Parametric-level-set approach to topology optimization of fluids with the Navier-Stokes and lattice Boltzmann equations. Proceedings of WCSMO2007

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2009) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (1992) Shape and layout optimization of structural systems and optimality criteria methods. Springer, New York

    Book  MATH  Google Scholar 

  • Rozvany GIN (2000) The SIMP Method in Topology Optimization-Theoretical Background, Advantages and New Applications. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach

  • Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev ASME 48:41–119

    Google Scholar 

  • Rvachev VL (1963) On the analytical description of some geometric objects. Reports Ukrainian Acad Sci 153(4):765–767

    Google Scholar 

  • Rvachev V (1982) Theory of R-functions and some applications. Kiev, Naukova Dumka

    MATH  Google Scholar 

  • Schaback R, Wendland H (1999) Using compactly supported radial basis functions to solve partial differential equations. Bound Elem Technol 13:311–324

    Google Scholar 

  • Schaback R, Wendland H (2001) Characterization and construction of radial basis functions. In: Dyn N, Leviatan D, Pinkus A (eds) Multivariate approximation and applications. Cambridge University Press, Cambridge, pp 1–24

    Chapter  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Shapiro V (1991) Theory of R-functions and applications: a primer. Technical Report, Cornell University

  • Shapiro V (1994) Real functions for representation of rigid solids. Comput Aided Geom Des 11(2):153–175

    Article  MATH  Google Scholar 

  • Shapiro V, Tsukanov I (1999) Implicit functions with guaranteed differential properties. In: Proceedings of the fifth ACM Symposium on Solid Modeling and Applications. ACM, New York, pp 258–269

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  • Solem J, Overgaard N (2005) A gradient descent procedure for variational dynamic surface problems with constraints. In: variational, geometric, and level set methods in computer vision. Springer, Berlin Heidelberg, pp 332–343

  • Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  MATH  Google Scholar 

  • Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200

    Article  MATH  Google Scholar 

  • Svanberg K (2005) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  Google Scholar 

  • Tsai R, Osher S (2003) Review article: level set methods and their applications in image science. Commun Math Sci 1(4):1–20

    Article  MathSciNet  Google Scholar 

  • Wang MY, Wang X (2004a) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MATH  Google Scholar 

  • Wang MY, Wang X (2004b) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4):373–396

    MATH  Google Scholar 

  • Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922

    Article  MATH  Google Scholar 

  • Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090

    Article  MATH  Google Scholar 

  • Wang MY, Wei P (2005) Topology optimization with level set method incorporating topological derivative. In: Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization. Rio de Janeiro

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MATH  Google Scholar 

  • Wang MY, Chen S, Wang X, Mei Y (2005) Design of multi-material compliant mechanisms using level-set methods. J Mech Des 127(5):941–956

    Article  Google Scholar 

  • Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Article  Google Scholar 

  • Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272

    Article  MATH  MathSciNet  Google Scholar 

  • Xia Q, Wang MY, Wang S, Chen S (2006) Semi-Lagrange method for level-set-based structural topology and shape optimization. Struct Multidiscip Optim 31(6):419–429

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao H-K, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1):179–195

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research work sponsored in part by the Natural Science Foundation of China (Grants: 50975107), the National Key Technologies R & D Program of China (Grants: 2010ZX04001-032), the Open Research Fund Program of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (Grants: 31115020), and also by the Guangdong Province High-Tech Zone Development Guiding Program (Grants: 2011B010700081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Wang, S., Li, B. et al. A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Struct Multidisc Optim 50, 253–273 (2014). https://doi.org/10.1007/s00158-014-1045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1045-7

Keywords

Navigation