Skip to main content
Log in

Fatigue constrained topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We present a contribution to a relatively unexplored application of topology optimization: structural topology optimization with fatigue constraints. A probability based high-cycle fatigue analysis is combined with principal stress calculations in order to find the topology with minimum mass that can withstand prescribed variable-amplitude loading conditions for a specific life time. This allows us to generate optimal conceptual designs of structural components where fatigue life is the dimensioning factor. We describe the fatigue analysis and present ideas that make it possible to separate the fatigue analysis from the topology optimization. The number of constraints is kept low as they are applied to stress clusters, which are created such that they give adequate representations of the local stresses. Optimized designs constrained by fatigue and static stresses are shown and a comparison is also made between stress constraints based on the von Mises criterion and the highest tensile principal stresses. The paper is written with focus on structural parts in the avionic industry, but the method applies to any load carrying structure, made of linear elastic isotropic material, subjected to repeated loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13(4):258–266

    Article  Google Scholar 

  • Christensen P, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer Verlag

  • Dahlberg T, Ekberg A (2002) Failure, fracture, fatigue: an introduction. Studentlitteratur

  • Desmorat B, Desmorat R (2008) Topology optimization in damage governed low cycle fatigue. Comptes Rendus Mecanique 336(5):448–453

    Article  MATH  Google Scholar 

  • Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA Paper 98-4906, pp 1501–1509

  • Gruen F, Eichlseder W, Puchner K (2003) Shape- and topology optimization regarding fatigue analysis. Cumulative Fatigue Damage, Seville (Spain)

  • Guo X, Cheng G, Yamazaki K (2001) A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Struct Multidiscip Optim 22(5):364–373

    Article  Google Scholar 

  • Haftka R, Gürdal Z, Kamat M (1990) Elements of structural optimization. Kluwer Academic Publishers

  • Holmberg E, Torstenfelt B, Klarbring A (2013a) Stress constrained topology optimization. Structural and Multidisciplinary Optimization, 1–15. doi:10.1007/s00158-012-0880-7

  • Holmberg E, Torstenfelt B, Klarbring A (2013b) Global and clustered approaches for stress constrained topology optimization and deactivation of design variables. In: 10th World congress on structural and multidisciplinary optimization

  • Kaya N, Karen İ, Öztürk F (2010) Re-design of a failed clutch fork using topology and shape optimisation by the response surface method. Mater Des 31(6):3008–3014

    Article  Google Scholar 

  • Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidiscip Optim 2(3):133–142

    Article  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Mrzyglod M, Zielinski A (2006) Numerical implementation of multiaxial high-cycle fatigue criterion to structural optimization. J Theor Appl Mech 44(3):691–712

    Google Scholar 

  • Mrzyglod M, Zielinski A (2007a) Multiaxial high-cycle fatigue constraints in structural optimization. Int J Fatigue 29(9):1920–1926

    Article  MATH  Google Scholar 

  • Mrzyglod M, Zielinski A (2007b) Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion. Struct Multidiscip Optim 33(2):161–171

    Article  Google Scholar 

  • MSC Software: MSC Fatigue (2013). http://www.mscsoftware.com

  • Optistruct (2012) 11.0, users manual. Altair engineering. Inc., Troy, MI

    Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437

    Article  MathSciNet  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441

    Article  MATH  Google Scholar 

  • Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Pedersen N, Nielsen A (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25(5):436–445

    Article  Google Scholar 

  • Rozvany G, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidiscip Optim 8(4):228–235

    Article  Google Scholar 

  • Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidiscip Optim 8(4):207–227

    Article  Google Scholar 

  • Suresh S (1998) Fatigue of materials. Cambridge University Press

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int Journal Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Torstenfelt B (2013) The TRINITAS project. http://www.solid.iei.liu.se/Offered_services/Trinitas

  • Wang MY, Luo Y (2013) An enhanced aggregation method for stress-constrained topology optimization problems. In: 10th World congress on structural and multidisciplinary optimization

  • Zhang WS, Guo X, Wang MY, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Methods Eng 93(9):942–959

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Holmberg.

Appendix

Appendix

Differentiating (13) with respect to design variable x b gives

$$\frac{\partial S_{ij}}{\partial x_{b}}\phi_{j}^{\alpha}+S_{ij}\frac{\partial\phi_{j}^{\alpha}}{\partial x_{b}}=\frac{\partial\lambda^{\alpha}}{\partial x_{b}}I_{ij}\phi_{j}^{\alpha}+\lambda^{\alpha}\frac{\partial I_{ij}}{\partial x_{b}}\phi_{j}^{\alpha}+\lambda^{\alpha}I_{ij}\frac{\partial\phi_{j}^{\alpha}}{\partial x_{b}}. $$

Using \(\frac {\partial I_{ij}}{\partial x_{b}}=0\) and rearranging gives

$$ \frac{\partial S_{ij}}{\partial x_{b}}\phi_{j}^{\alpha}+(S_{ij}-\lambda^{\alpha}I_{ij})\frac{\partial\phi_{j}^{\alpha}}{\partial x_{b}}=\frac{\partial\lambda^{\alpha}}{\partial x_{b}}I_{ij}\phi_{j}^{\alpha}. $$
(24)

The eigenvector \(\phi _{j}^{\alpha }\) is a unit vector, i.e.,

$$\phi_{i}^{\alpha}I_{ij}\phi_{j}^{\alpha}=\phi_{j}^{\alpha}\phi_{j}^{\alpha}=1, $$

therefore, if we premultiply (25) by \(\phi _{i}^{\alpha }\), we get

$$ \phi_{i}^{\alpha}\frac{\partial S_{ij}}{\partial x_{b}}\phi_{j}^{\alpha}+\phi_{i}^{\alpha}(S_{ij}-\lambda^{\alpha}I_{ij})\frac{\partial\phi_{j}^{\alpha}}{\partial x_{b}}=\phi_{i}^{\alpha}\frac{\partial\lambda^{\alpha}}{\partial x_{b}}I_{ij}\phi_{j}^{\alpha}, $$
(25)

and rearranging the right hand side of (26) gives

$$ \phi_{i}^{\alpha}\frac{\partial\lambda^{\alpha}}{\partial x_{b}}I_{ij}\phi_{j}^{\alpha}=\frac{\partial\lambda^{\alpha}}{\partial x_{b}}\phi_{i}^{\alpha}I_{ij}\phi_{j}^{\alpha}=\frac{\partial\lambda^{\alpha}}{\partial x_{b}}. $$
(26)

As both S i j and I i j are symmetric, we can rewrite as

$$ \phi_{i}^{\alpha}(S_{ij}-\lambda^{\alpha}I_{ij})=(S_{ji}-\lambda^{\alpha}I_{ji})\phi_{i}^{\alpha}=0, $$
(27)

where the zero comes from (13). Combining (26), (27) and (28), we now find that the derivative of the eigenvalues with respect to the design variable reads

$$ \frac{\partial\lambda^{\alpha}}{\partial x_{b}}=\phi_{i}^{\alpha}\frac{\partial S_{ij}}{\partial x_{b}}\phi_{j}^{\alpha}. $$
(28)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmberg, E., Torstenfelt, B. & Klarbring, A. Fatigue constrained topology optimization. Struct Multidisc Optim 50, 207–219 (2014). https://doi.org/10.1007/s00158-014-1054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1054-6

Keywords

Navigation