Skip to main content
Log in

Discrete thickness optimization via piecewise constraint penalization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Structural engineers are often constrained by cost or manufacturing considerations to select member thicknesses from a discrete set of values. Conventional, gradient-free techniques to solve these discrete problems cannot handle large problem sizes, while discrete material optimization (DMO) techniques may encounter difficulties, especially for bending-dominated problems. To resolve these issues, we propose an efficient gradient-based technique to obtain engineering solutions to the discrete thickness selection problem. The proposed technique uses a series of constraints to enforce an effective stiffness-to-mass and strength-to-mass penalty on intermediate designs. In conjunction with these constraints, we apply an exact penalty function which drives the solution towards a discrete design. We utilize a continuation approach to obtain approximate solutions to the discrete thickness selection problem by solving a sequence of relaxed continuous problems with increasing penalization. We also show how this approach can be applied to combined discrete thickness selection and topology optimization design problems. To demonstrate the effectiveness of the proposed technique, we present both compliance and stress-constrained results for in-plane and bending-dominated problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Akgun MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH (2001) Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA J 39(3):511–516. doi:10.2514/2.1336

    Article  Google Scholar 

  • Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383. doi:10.1002/nme.1620210213. ISSN 1097-0207

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190 (37–38):4911–4928. doi:10.1016/S0045-7825(00)00356-X. ISSN 0045-7825

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190 (26–27):3443–3459. doi:10.1016/S0045-7825(00)00278-4. ISSN 0045-7825

    Article  MATH  Google Scholar 

  • Bruyneel M (2011) SFP - A new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43:17–27. doi:10.1007/s00158-010-0548-0. ISSN 1615-147X

    Article  Google Scholar 

  • Bruyneel M, Duysinx P, Fleury C, Gao T (2011) Extensions of the shape functions with penalization parametrization for composite-ply optimization. AIAA J 49(10):2325–2329. doi:10.2514/1.J051225

    Article  Google Scholar 

  • Chan C-M (1992) An optimality criteria algorithm for tall steel building design using commercial standard sections. Struct Optim 5 (1–2):26–29. doi:10.1007/BF01744692. ISSN 0934-4373

    Article  Google Scholar 

  • Cheng GD, Guo X (1997) 𝜖-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266. doi:10.1007/BF01197454. ISSN 1615-147X

    Article  Google Scholar 

  • Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114. doi:10.1002/nme.4270. ISSN 1097-0207

    Article  MATH  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2005) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131. doi:10.1137/S0036144504446096. ISSN 00361445

    Article  MATH  MathSciNet  Google Scholar 

  • Grierson DE, Lee WH (1984) Optimal synthesis of steel frameworks using standard sections. J Struct Mech 12(3):335–370. doi:10.1080/03601218408907476

    Article  Google Scholar 

  • Herencia JE, Haftka RT, Balabanov V (2013) Structural optimization of composite structures with limited number of element properties. Struct Multidiscip Opt 47 (2):233–245. doi:10.1007/s00158-012-0821-5. ISSN 1615-147X

    Article  MATH  MathSciNet  Google Scholar 

  • Huang M-W, Arora J (1997) Optimal design of steel structures using standard sections. Struct Optim 14(1):24–35. doi:10.1007/BF01197555 10.1007/BF01197555. ISSN 0934-4373

    Article  Google Scholar 

  • Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43:811–825. doi:10.1007/s00158-011-0625-z. ISSN 1615-147X

    Article  MATH  Google Scholar 

  • Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optimi 44:149–163. doi:10.1007/s00158-011-0648-5. ISSN 1615-147X

    Article  Google Scholar 

  • Jog CS, Haber R B (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226. doi:10.1016/0045-7825(95)00928-0. ISSN 0045-7825

    Article  MATH  MathSciNet  Google Scholar 

  • Kennedy GJ, Martins JR (2014) A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem Anal Des 87(0):56–73. doi:10.1016/j.finel.2014.04.011. ISSN 0168-874X

    Article  Google Scholar 

  • Kennedy GJ, Martins JRRA (2010) Parallel solution methods for aerostructural analysis and design optimization. In: Proceedings of the 13th AIAA/ISSMO multidisciplinary analysis optimization conference, Fort Worth. AIAA 2010–9308

  • Kennedy GJ, Martins J RRA (2013) A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints. Struct Multidiscip Optim:1–15. doi:10.1007/s00158-013-0906-9. ISSN 1615-147X

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems. Zurich, Switzerland

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620. doi:10.1007/s00158-009-0440-y. ISSN 1615-147X

    Article  Google Scholar 

  • Le Riche R (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956. doi:10.2514/3.11710

    Article  MATH  Google Scholar 

  • Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46:647–661. doi:10.1007/s00158-012-0780-x

    Article  MATH  MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical Optimization. Springer series in operations research and financial engineering. Springer

  • Perez RE, Jansen PW, Martins JRRA (2012) pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Struct Multidiscip Optim 45(1):101–118. doi:10.1007/s00158-011-0666-3

    Article  MATH  MathSciNet  Google Scholar 

  • Poon N, Martins J R R A (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73. doi:10.1007/s00158-006-0061-7. ISSN 1615-147X

    Article  Google Scholar 

  • Raspanti CG, Bandoni JA, Biegler LT (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45 (6):1037–1067. doi:10.1016/S0022-5096(96)00114-7. ISSN 0022-5096

    Article  MathSciNet  Google Scholar 

  • Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48 (2):249–265. doi: doi:10.1007/s00158-013-0904-y. ISSN 1615-147X

    Article  MathSciNet  Google Scholar 

  • Sørensen SN, Sørensen R, Lund E (2014) DMTO – a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscipl Optim 50(1):25–47. doi:10.1007/s00158-014-1047-5. ISSN 1615-147X

    Article  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng:2009–2027. doi:10.1002/nme.1259. ISSN 1097-0207

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124. doi:10.1007/s001580100129. ISSN 1615-147X

    Article  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (1):25–57. doi:10.1007/s10107-004-0559-y. ISSN 0025-5610

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their helpful recommendations that greatly improved the paper. The author gratefully acknowledges the financial support of the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, G.J. Discrete thickness optimization via piecewise constraint penalization. Struct Multidisc Optim 51, 1247–1265 (2015). https://doi.org/10.1007/s00158-014-1210-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1210-z

Keywords

Navigation