Skip to main content
Log in

Thickness control in structural optimization via a level set method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the context of structural optimization via a level-set method we propose a framework to handle geometric constraints related to a notion of local thickness. The local thickness is calculated using the signed distance function to the shape. We formulate global constraints using integral functionals and compute their shape derivatives. We discuss different strategies and possible approximations to handle the geometric constraints. We implement our approach in two and three space dimensions for a model of linearized elasticity. As can be expected, the resulting optimized shapes are strongly dependent on the initial guesses and on the specific treatment of the constraints since, in particular, some topological changes may be prevented by those constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  • Alexandrov O, Santosa F (2005) A topology-preserving level set method for shape optimization. J Comput Phys 204(1):121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G (2002) Shape optimization by the homogenization method, volume 146 of Applied Mathematical Sciences. Springer-Verlag, New York

    Book  Google Scholar 

  • Allaire G (2007) Conception optimale de structures, volume 58 of Mathématiques & Applications (Berlin). Springer-Verlag, Berlin

    Google Scholar 

  • Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Mutli-phase structural optimization via a level-set method. ESAIM: Control, Optimisation and Calculus of Variations 20:576–611. doi:10.1051/cocv/2013076

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Michailidis. G (2013) Casting constraints in structural optimization via a level-set method. In: WCSMO-10, Orlando, Florida, USA

  • Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. C R Acad Sci Paris Série I 334:1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio L (1999) Lecture notes on geometric evolution problems, distance function and viscosity solutions. Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory,G Buttazo, A. Marino, M.K.V. Murthy Eds pages 5–93

  • Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications Springer

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40(9):951–962

    Article  MathSciNet  Google Scholar 

  • Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pages 505–514. Springer

  • Clarke F (1983) Optimization and nonsmooth analysis. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Dapogny C (2013) Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. PhD thesis, Université Pierre et Marie Curie-Paris VI,available at: http://tel.archives-ouvertes.fr/tel-00916224

  • de Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367

    Article  MathSciNet  MATH  Google Scholar 

  • Delfour MC, Zolésio J-P (2001) Shapes Geometries, volume 4 of Advances in Design and Control Society for Industrial and Applied Mathematics (SIAM). PA, Philadelphia

    Google Scholar 

  • Delfour MC, Zolésio J-P (2005) Shape identification via metrics constructed from the oriented distance function. Control Cybern 34(1):137

    MathSciNet  MATH  Google Scholar 

  • Evans LC, Gariepy RF (1992) Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton FL

    MATH  Google Scholar 

  • Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37 (5):463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1):123–135

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK (2014) Optimizing the layout of discrete objects in structures and materials A projection-based topology optimization approach

  • Guest JK, Asadpoure A, Ha S-H (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272(0):354–378

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller M, Ring W (2004) A second order shape optimization approach for image segmentation. SIAM J Appl Math 64(2):442–467

    Article  MathSciNet  MATH  Google Scholar 

  • Kimmel R, Bruckstein AM (1993) Shape offsets via level sets. Comput Aided Des 25(3):154–162

    Article  MATH  Google Scholar 

  • Kimmel R, Shaked D, Kiryati N, Bruckstein AM (1995) Skeletonization via distance maps and level sets. In: Photonics for Industrial Applications, pages 137–148. International Society for Optics and Photonics

  • Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331

    Article  MATH  Google Scholar 

  • Michailidis G (2014) Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set Method. PhD thesis, Ecole Polytechnique X,available at: http://pastel.archives-ouvertes.fr/pastel-00937306

  • Minoux M (1983) Programmation mathématique: théorie et algorithmes, volume 1 Dunod Paris

  • Montanari U (1968) A method for obtaining skeletons using a quasi-euclidean distance. J ACM(JACM) 15 (4):600–624

    Article  MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization springer series in operations research and financial engineering. Springer, New York, second edition

    Google Scholar 

  • Osher SJ, Fedkiw R (2003) Level set methods and dynamic implicit surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: i. frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288

    Article  MathSciNet  MATH  Google Scholar 

  • Osher SJ, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41 (8):1417–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer-Verlag, New York

    Book  Google Scholar 

  • Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science Cambridge university press

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech Earthq Eng 25(4):493–524

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239

    Article  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16(1):68–75

    Article  Google Scholar 

  • Simon J, Murat F (1976) Sur le contrôle par un domaine géométrique. Publication 76015 du Laboratoire d’Analyse Numérique de l’Université Paris VI (76015):222 pages

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Sokołowski J, Zolésio J-P (1992) Introduction to shape optimization, volume 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin. Shape sensitivity analysis

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • SYSTUS2014 SYSWELD2014 (2014) User’s manual SYSTUS International

  • Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidiscip Optim 27(1):1–19

    Article  Google Scholar 

  • Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in simp-based topology optimization Computer Methods in Applied Mechanics and Engineering

  • Zhao H (2005) A fast sweeping method for eikonal equations. Math Comput 74(250):603–627

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge fruitful discussions and helpful remarks from Marc Albertelli (Renault) and Charles Dapogny (LJLL Paris VI - Renault). This work has been supported by the RODIN project (FUI AAP 13). G. Allaire is a member of the DEFI project at INRIA Saclay Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Allaire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaire, G., Jouve, F. & Michailidis, G. Thickness control in structural optimization via a level set method. Struct Multidisc Optim 53, 1349–1382 (2016). https://doi.org/10.1007/s00158-016-1453-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1453-y

Keywords

Navigation