Skip to main content
Log in

Topology optimization of piezoelectric macro-fiber composite patches on laminated plates for vibration suppression

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work presents a new methodology for the topology optimization of piezoelectric actuators in laminated composite structures with the objective of controlling external perturbation induced by structural vibrations. The linear-quadratic regulator (LQR) optimal control technique is used and the topology optimization is formulated seeking to find the optimum localization of the macro-fiber composite (MFC) active piezoelectric patch by means of the maximization of the controllability index. For the structural model, we propose a simplified MFC/structure interaction model. It is assumed that the MFC is one of the orthotropic material layers with an initial strain arising from the application of an electric potential. This strain acts on the remainder of the structure and its effect is considered analytically. Numerical results show that the proposed MFC structure interaction model presents good agreement with experiments and numerical simulations of models that take into account the electromechanical effect. Results of the actuator location optimization show that the implemented technique improves the structural vibration damping. Results and comparisons are presented for the vibration control strategy using the LQR controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ahmad S, Irons BM, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2(3):419–451

    Article  Google Scholar 

  • Bailey T, Ubbard J (1985) Distributed piezoelectric-polymer active vibration control of a cantilever beam. J Guid Control Dyn 8(5):605–611

    Article  MATH  Google Scholar 

  • Bartels RH, Stewart G (1972) Solution of the matrix equation ax+ xb= c [f4]. Commun ACM 15(9):820–826

    Article  MATH  Google Scholar 

  • Baz A, Poh S (1988) Performance of an active control system with piezoelectric actuators. J Sound Vib 126(2):327–343

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1 (4):193–202

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bent AA, Hagood NW (1997) Piezoelectric fiber composites with interdigitated electrodes. J Intell Mater Syst Struct 8(11):903–919

    Article  Google Scholar 

  • Cheng G, Liu X (2011) Discussion on symmetry of optimum topology design. Struct Multidisc Optim 44 (1):713–717

    Article  MATH  Google Scholar 

  • Dano ML, Gakwaya M, Jullière B (2008) Compensation of thermally induced distortion in composite structures using macro-fiber composites. J Intell Mater Syst Struct 19(2):225–233

    Article  Google Scholar 

  • De Leon DM, de Souza CE, Fonseca JSO (2012) Aeroelastic tailoring using fiber orientation and topology optimization. Struct Multidiscip Optim 46(5):663–667

  • Deraemaeker A, Nasser H, Benjeddou A, Preumont A (2009) Mixing rules for the piezoelectric properties of macro fiber composites (mfc). J Intell Mater Syst Struct 20:1475–1482

    Article  Google Scholar 

  • Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Structural Optimization 10 (1):40–45

    Article  Google Scholar 

  • Gawronski W (2004) Advanced structural dynamics and active control of structures. Springer, Berlin

    Book  MATH  Google Scholar 

  • Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidisc Optim 46(5):631–645

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometricallya new moving morphable components based framework. J Appl Mech 81(8):081,009

    Article  Google Scholar 

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (mmc) with curved skeletons. Comput Methods Appl Mech Eng 310(1):711–748

    Article  MathSciNet  Google Scholar 

  • Gupta V, Sharma M, Thakur N (2010) Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. J Intell Mater Syst Struct 21(12):1227–1243

    Article  Google Scholar 

  • Hagood NW, Chung WH, Von Flotow A (1990) Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst Struct 1(3):327–354

    Article  Google Scholar 

  • Jog AS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

    Article  MathSciNet  MATH  Google Scholar 

  • Jones RM (1998) Mechanics of composite materials. CRC Press, Boca Raton

    Google Scholar 

  • Kiyono CY, Silva ECN, Reddy JN (2016) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160(1):503–515

    Google Scholar 

  • Kosakaa I, Swana CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47–61

    Article  MathSciNet  Google Scholar 

  • Kumar WP, Palaninathan R (1997) Finite element analysis of laminated shells with exact through-thickness integration. Comput Struct 63(1):173–184

    Article  MATH  Google Scholar 

  • Latalski J (2011) Modelling of macro fiber composite piezoelectric active elements in abaqus system. Eksploatacja i Niezawodnosc-Maintenance and Reliability 4(52):72–78

    Google Scholar 

  • Nguyen DT, Georges D (2006) Controllability gramian for optimal placement of power system stabilizers in power systems. In: IEEE Asia Pacific conference on circuits and systems, 2006. APCCAS 2006. IEEE, pp 1373–1378

  • Padoin E, Fonseca JSO, Perondi EA, Menuzzi O (2015) Optimal placement of piezoelectric macro fiber composite patches on composite plates for vibration suppression. Latin American Journal of Solids and Structures 12(5):925–947

    Article  Google Scholar 

  • Prasath SS, Arockiarajan A (2013) Effective electromechanical response of macro-fiber composite (mfc): analytical and numerical models. Int J Mech Sci 77:98–106

    Article  Google Scholar 

  • Preumont A (2011) Vibration control of active structures: an introduction, vol 179. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rao SS (2004) Mechanical vibrations. Pearson Prentice Hall, Inc., Person Prentice Hall

    Google Scholar 

  • Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3):250–252

    Article  Google Scholar 

  • Ruiz D, Bellido J, Donoso A (2016) Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct Multidiscip Optim 53(4):715–730

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424. https://doi.org/10.1007/s00158-006-0087-x

    Article  Google Scholar 

  • Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8(1):365–379

    Article  Google Scholar 

  • Silva ECN (2003) Topology optimization applied to the design of linear piezoelectric motors. J Intell Mater Syst Struct 14(4–5):309–322

    Article  Google Scholar 

  • Takezawa A, Kitamura M, Vatanabe SL, Silva ECN (2014) Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct Multidiscip Optim 49(2):281–297

    Article  MathSciNet  Google Scholar 

  • Tong G, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114

    Article  MATH  Google Scholar 

  • Wu B, Xu Z, Li Z (2007) A note on computing eigenvector derivatives with distinct and repeated eigenvalues. Int J Numer Methods Biomed Eng 23(3):241–251

    MathSciNet  MATH  Google Scholar 

  • Zhai J, Zhao G, Shang L (2016) Integrated design optimization of structure and vibration control with piezoelectric curved shell actuators. J Intell Mater Syst Struct 27(19):2672–2691

    Article  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (mmc) and the ersatz material model. Struct Multidiscip Optim 53(1):1243– 1260

    Article  MathSciNet  Google Scholar 

  • Zhang X, Kang Z (2014) Topology optimization of piezoelectric layers in plates with active vibration control. J Intell Mater Syst Struct 25(6):697–712

    Article  Google Scholar 

  • Zhang Y, Yang C (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88(1):147–157

    Article  Google Scholar 

  • Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Padoin.

Additional information

Responsible Editor: Xu Guo

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padoin, E., Santos, I.F., Perondi, E.A. et al. Topology optimization of piezoelectric macro-fiber composite patches on laminated plates for vibration suppression. Struct Multidisc Optim 59, 941–957 (2019). https://doi.org/10.1007/s00158-018-2111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2111-3

Keywords

Navigation