Skip to main content
Log in

Topology optimization of piezoelectric curved shell structures with active control for reducing random vibration

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper investigates topology optimization of the surface electrode coverage on piezoelectric sensor/actuator layers attached to a curved shell structure subjected to stationary random force excitation, with the aim to minimize the random vibration response under active control. In the optimization model, the power spectral density (PSD) of displacement response at the specified point is considered as the objective function. The pseudo-densities describing the surface electrode distribution are assigned as the design variables, and an artificial active damping model with penalization is employed to suppress intermediate density values. The voltage across each actuator is determined by velocity feedback control law. Pseudo excitation method (PEM) is introduced to analyze random vibration response of a piezoelectric curved shell structure with active control. In this context, the adjoint variable method for the sensitivity analysis of displacement PSD with respect to topological design variables is derived. Numerical examples fully demonstrate the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  MATH  Google Scholar 

  • Beckert W, Kreher WS (2003) Modelling piezoelectric modules with interdigitated electrode structures. Comput Mater Sci 26:36–45

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    MathSciNet  MATH  Google Scholar 

  • Chacón J, Bellido J, Donoso A (2014) Integration of topology optimized designs into CAD/CAM via an IGES translator. Struct Multidiscip Optim 50(6):1115–1125

    Google Scholar 

  • Chee CYK, Tong LY, Steven GP (1998) A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J Intell Mater Syst Struct 9(1):3–19

    Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    MathSciNet  Google Scholar 

  • Donoso A, Bellido J (2009a) Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Struct Multidiscip Optim 38(4):347

    MathSciNet  MATH  Google Scholar 

  • Donoso A, Bellido JC (2009b) Tailoring distributed modal sensors for in-plane modal filtering. Smart Mater Struct 18(3):037002

    Google Scholar 

  • Gonçalves JF, De Leon DM, Perondi EA (2017) Topology optimization of embedded piezoelectric actuators considering control spillover effects. J Sound Vib 388:20–41

    Google Scholar 

  • Hu J, Zhang X, Kang Z (2018) Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization. J Intell Mater Syst Struct 29(10):2277–2294

    Google Scholar 

  • Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, New York

    MATH  Google Scholar 

  • Jang Y, Hartarto Tambunan I, Tak H et al (2013) Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Appl Phys Lett 102(12):123901

    Google Scholar 

  • Knight RR, Mo C, Clark WW (2011) MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam. J Electroceram 26(1-4):14–22

    Google Scholar 

  • Lin J (1992) A fast CQC algorithm of PSD matrices for random seismic responses. Comput Struct 44(3):683–687

    MathSciNet  Google Scholar 

  • Lin J, Zhang W, Li J (1994) Structural responses to arbitrarily coherent stationary random excitations. Comput Struct 50(5):629–633

    MATH  Google Scholar 

  • Lin J, Zhao Y, Zhang Y (2001) Accurate and highly efficient algorithms for structural stationary/non-stationary random responses. Comput Methods Appl Mech Eng 191(1):103–111

    MATH  Google Scholar 

  • Lin ZQ, Gea HC, Liu ST (2011) Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mech Sinica 27(5):730–737

    MathSciNet  MATH  Google Scholar 

  • Maddisetty H, Frecker M (2002) Dynamic Topology optimization of compliant mechanisms and piezoceramic actuators. J Mech Des 126(6):975–983

    Google Scholar 

  • Molter A, Fonseca JSO, dos Santos Fernandez L (2016) Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl Math Model 40(9-10):5576–5588

    MathSciNet  MATH  Google Scholar 

  • Nanthakumar S, Lahmer T, Zhuang X et al (2016) Topology optimization of piezoelectric nanostructures. J Mech Phys Solids 94:316–335

    MathSciNet  Google Scholar 

  • Nguyen MD, Nazeer H, Dekkers M et al (2013) Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films. Smart Mater Struct 22(8):085013

    Google Scholar 

  • Peng FJ, Ng A, Hu YR (2005) Actuator placement optimization and adaptive vibration control of plate smart structures. J Intell Mater Syst Struct 16(3):263–271

    Google Scholar 

  • Pereira da Silva L, Larbi W, Deü J-F (2015) Topology optimization of shunted piezoelectric elements for structural vibration reduction. J Intell Mater Syst Struct 26(10):1219–1235

    Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K et al (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20(16):1923–1939

    Google Scholar 

  • Ryou J, Park K, Kim S (1998) Electrode pattern design of piezoelectric sensors and actuators using genetic algorithms. AIAA J 36(2):227–233

    MATH  Google Scholar 

  • Silva ECN (2003) Topology optimization applied to the design of linear piezoelectric motors. J Intell Mater Syst Struct 14(14):309–322

    Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    MathSciNet  MATH  Google Scholar 

  • Takezawa A, Kitamura M, Vatanabe SL et al (2014a) Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct Multidiscip Optim 49(2):281–297

    MathSciNet  Google Scholar 

  • Takezawa A, Makihara K, Kogiso N et al (2014b) Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems. J Sound Vib 333(2):327–344

    Google Scholar 

  • Wang SY, Tai K, Quek ST (2006) Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates. Smart Mater Struct 15(15):253–269

    Google Scholar 

  • Wang Y, Luo Z, Zhang X et al (2014) Topological design of compliant smart structures with embedded movable actuators. Smart Mater Struct 23(4):045024

    Google Scholar 

  • Wein F, Kaltenbacher M, Leugering G et al (2009) Topology optimization of a piezoelectric-mechanical actuator with single- and multiple-frequency excitation. Int J Appl Electromagn Mech 30(3):201–221

    Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Google Scholar 

  • Xu R, Lei A, Dahl-Petersen C et al (2012) Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sensors Actuators A Phys 188:383–388

    Google Scholar 

  • Xu B, Ding H, Xie YM (2017) Optimal design of material microstructure for maximizing damping dissipation velocity of piezoelectric composite beam. Int J Mech Sci 128:527–540

    Google Scholar 

  • Yang YW, Jin ZL, Soh CK (2006) Integrated optimization of control system for smart cylindrical shells using modified GA. J Aerosp Eng 19(2):68–79

    Google Scholar 

  • Yang K, Zhu J, Wu M et al (2018) Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control. Comput Methods Appl Mech Eng 334:440–469

    MathSciNet  MATH  Google Scholar 

  • Yoon GH, Choi H, Hur S (2018) Multiphysics topology optimization for piezoelectric acoustic focuser. Comput Methods Appl Mech Eng 332:600–623

    MathSciNet  MATH  Google Scholar 

  • Zhai JJ, Zhao GZ, Shang LY (2016) Integrated design optimization of structure and vibration control with piezoelectric curved shell actuators. J Intell Mater Syst Struct 27(19):2672–2691

    Google Scholar 

  • Zhai J, Zhao G, Shang L (2017) Integrated design optimization of structural size and control system of piezoelectric curved shells with respect to sound radiation. Struct Multidiscip Optim 56(6):1287–1304

    Google Scholar 

  • Zhang XP, Kang Z (2014a) Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Comput Methods Appl Mech Eng 281(1):200–219

    MathSciNet  MATH  Google Scholar 

  • Zhang XP, Kang Z (2014b) Topology optimization of piezoelectric layers in plates with active vibration control. J Intell Mater Syst Struct 25(6):697–712

    Google Scholar 

  • Zhang XP, Kang Z, Li M (2014) Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Struct Multidiscip Optim 50(5):799–814

    MathSciNet  Google Scholar 

  • Zhang X, Takezawa A, Kang Z (2018) Topology optimization of piezoelectric smart structures for minimum energy consumption under active control. Struct Multidiscip Optim 58(1):185–199

    MathSciNet  Google Scholar 

  • Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23

    Google Scholar 

  • Zorić ND, Simonović AM, Mitrović ZS et al (2013) Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. J Intell Mater Syst Struct 24(4):499–526

    Google Scholar 

Download references

Funding

The project of research presented in this paper is supported by the National Natural Science Foundation of China (U1508209, 11072049), Liaoning BaiQianWan Talents Program and Dalian Science Technology Innovation Fund (2018J11CY003), Talents Introduction Research Fund of Shenyang Aerospace University (19YB10, 19YB11). The authors would like to acknowledge these funds support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linyuan Shang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: YoonYoung Kim

Publisher’s note

Springer Nature remains neutral withregard to jurisdictional claims in published mapsand institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Shang, L. & Zhao, G. Topology optimization of piezoelectric curved shell structures with active control for reducing random vibration. Struct Multidisc Optim 61, 1439–1452 (2020). https://doi.org/10.1007/s00158-019-02423-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02423-3

Keywords

Navigation