Skip to main content
Log in

An adaptive PCE-HDMR metamodeling approach for high-dimensional problems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization. However, current stand-alone Cut-HDMRs usually come across the problem of prediction uncertainty while combining an ensemble of metamodels with Cut-HDMR results in an implicit and inefficient process in response approximation. To this end, a novel stand-alone Cut-HDMR is proposed in this article by taking advantage of the explicit polynomial chaos expansion (PCE) and hierarchical Cut-HDMR (named PCE-HDMR). An intelligent dividing rectangles (DIRECT) sampling method is adopted to adaptively refine the model. The novelty of the PCE-HDMR is that the proposed multi-hierarchical algorithm structure by integrating PCE with Cut-HDMR can efficiently and robustly provide simple and explicit approximations for a wide class of high-dimensional problems. An analytical function is first used to illustrate the modeling principles and procedures of the algorithm, and a comprehensive comparison between the proposed PCE-HDMR and other well-established Cut-HDMRs is then made on fourteen representative mathematical functions and five engineering examples with a wide scope of dimensionalities. The results show that the proposed PCE-HDMR has much superior accuracy and robustness in terms of both global and local error metrics while requiring fewer number of samples, and its superiority becomes more significant for polynomial-like functions, higher-dimensional problems, and relatively larger PCE degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baptista R, Stolbunov V, Nair PB (2019) Some greedy algorithms for sparse polynomial chaos expansions. J Comput Phys 387:303–325

    Article  MathSciNet  MATH  Google Scholar 

  • Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230:2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  • Cai XW, Qiu HB, Gao L, Yang P, Shao XY (2016) An enhanced RBF-HDMR integrated with an adaptive sampling method for approximating high dimensional problems in engineering design. Struct Multidiscip Optim 53(6):1209–1229

    Article  Google Scholar 

  • Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

    Article  MathSciNet  MATH  Google Scholar 

  • Chen LM, Li EY, Wang H (2016) Time-based reflow soldering optimization by using adaptive Kriging-HDMR method. Soldering Surf Mount Technol 28(2):101–113

    Article  Google Scholar 

  • Chen LM, Wang H, Ye F, Hu W (2019) Comparative study of HDMRs and other popular metamodeling techniques for high dimensional problems. Struct Multidiscip Optim 59(1):21–42

    Article  MathSciNet  Google Scholar 

  • Cheng GH, Younis A, Hajikolaei KH, Wang GG (2015) Trust region based mode pursuing sampling method for global optimization of high dimensional design problems. J Mech Des 137(2):021407

    Article  Google Scholar 

  • Cheng K, Lu ZZ, Ling CY, Zhou ST (2020) Surrogate-assisted global sensitivity analysis: an overview. Struct Multidiscip Optim 61(3):1187–1213

    Article  MathSciNet  Google Scholar 

  • Chowdhury R, Rao BN (2009) Hybrid high dimensional model representation for reliability analysis. Comput Methods Appl Mech Eng 198(5–8):753–765

    Article  MATH  Google Scholar 

  • Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127(6):1077–1087

    Article  Google Scholar 

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fang HB, Horstemeyer MF (2006) Global response approximation with radial basis functions. Eng Optim 38(4):407–424

    Article  MathSciNet  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Gibbons JD, Chakraborti S (2014) Nonparametric statistical inference: revised and expanded. CRC Press, Boca Raton

    Google Scholar 

  • Goel T, Haftka RT, Wei S, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216

    Article  Google Scholar 

  • Gorissen D, Crombecq K, Hendrickx W, Dhaene T (2007) Adaptive distributed metamodeling. High Performance Computing for Computational Science (VECPAR 2006). Lect Notes Comput Sci 4395:579–588

    Article  Google Scholar 

  • Hajikolaei KH, Wang GG (2014) High dimensional model representation with principal component analysis. J Mech Des 136(1):011003

    Article  Google Scholar 

  • Huang ZY, Qiu HB, Zhao M, Cai XW, Gao L (2015) An adaptive SVR-HDMR model for approximating high dimensional problems. Eng Comput 32(3):643–667

    Article  Google Scholar 

  • Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: radial basis functions, versus polynomials. Eur J Oper Res 138(1):142–154

    Article  MATH  Google Scholar 

  • Ishigami T, Homma T (1990) An importance quantification technique in uncertainty analysis for computer models. Proceedings of the First International Symposium on Uncertainty Modeling and Analysis (ISUMA’90), University of Maryland, 398–403. https://doi.org/10.1109/ISUMA.1990.151285

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximum distance designs. J Stat Plan Infer 26(2):131–148

    Article  Google Scholar 

  • Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157–181

    Article  MathSciNet  MATH  Google Scholar 

  • Kenett R, Zacks S (1998) Modern industrial statistics: design and control of quality and reliability. Duxbury Press, Belmont

    Google Scholar 

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253

    Article  MathSciNet  Google Scholar 

  • Li EY, Wang H (2016) An alternative adaptive differential evolutionary algorithm assisted by expected improvement criterion and cut-HDMR expansion and its application in time-based sheet forming design. Adv Eng Softw 97:96–107

    Article  Google Scholar 

  • Li GY, Rosenthal C, Rabitz H (2001) High dimensional model representations. J Phys Chem A 105(33):7765–7777

    Article  Google Scholar 

  • Li GY, Hu JS, Wang SW, Georgopoulos PG, Schoendorf J, Rabitz H (2006) Radom sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. J Phys Chem A 110(7):2474–2485

    Article  Google Scholar 

  • Li YF, Ng SH, Xie M, Goh TN (2010) A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Appl Soft Comput 10(4):1257–1273

    Article  Google Scholar 

  • Li EY, Ye F, Wang H (2017) Alternative Kriging-HDMR optimization method with expected improvement sampling strategy. Eng Comput 34(6):1807–1828

    Article  Google Scholar 

  • Liu HT, Hervas JR, Ong YS, Cai JF, Wang Y (2018) An adaptive RBF-HDMR modeling approach under limited computational budget. Struct Multidiscip Optim 57(3):1233–1250

    Article  Google Scholar 

  • Martin JD, Simpson TW (2005) Use of kriging models to approximate deterministic computer models. AIAA J 43(4):853–863

    Article  Google Scholar 

  • Mukhopadhyay T, Dey TK, Chowdhury R, Chakrabarti A, Adhikari S (2015) Optimum design of FRP bridge deck: an efficient RS-HDMR based approach. Struct Multidiscip Optim 52(3):459–477

    Article  Google Scholar 

  • Ostergard T, Jensen RL, Maagaard SE (2018) A comparison of six metamodeling techniques applied to building performance simulations. Appl Energy 211:89–103

    Article  Google Scholar 

  • Parnianifard A, Azfanizam AS, Ariffin MKA, Ismail MIS (2020) Comparative study of metamodeling and sampling design for expensive and semi-expensive simulation models under uncertainty. Simulation 96(1):89–110

    Article  Google Scholar 

  • Rabitz H, Alis OF (1999) General foundations of high-dimensional model representations. J Math Chem 25(2–3):197–233

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitz H, Alis OF, Shorter J, Shim K (1999) Efficient input-output model representations. Comput Phys Commun 117(1–2):11–20

    Article  MATH  Google Scholar 

  • Shan SQ, Wang GG (2010a) Metamodeling for high dimensional simulation-based design problems. J Mech Des 132(5):051009

    Article  Google Scholar 

  • Shan SQ, Wang GG (2010b) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41(2):219–241

    Article  MathSciNet  MATH  Google Scholar 

  • Shan SQ, Wang GG (2011) Turning black-box functions into white functions. J Mech Des 133(3):031003

    Article  Google Scholar 

  • Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1(4):407–414

    MathSciNet  MATH  Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  • Szepietowska K, Magnain B, Lubowiecka I, Florentin E (2018) Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Struct Multidiscip Optim 57(3):1391–1409

    Article  MathSciNet  Google Scholar 

  • Tang L, Wang H, Li GY (2013) Advanced high strength steel springback optimization by projection-based heuristic global search algorithm. Mater Des 43:426–437

    Article  Google Scholar 

  • Thomas PS, Somers MF, Hoekstra AW, Kroes GJ (2012) Chebyshev high-dimensional model representation (Chebyshev-HDMR) potentials: application to reactive scattering of H2 from Pt(111) and Cu(111) surfaces. Phys Chem Chem Phys 14(24):8628–8643

    Article  Google Scholar 

  • Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  • Tunga MA (2011) An approximation method to model multivariate interpolation problems: indexing HDMR. Math Comput Model 53(9–10):1970–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Tunga MA, Demiralp M (2006) Hybrid high dimensional model representation (HHDMR) on the partitioned data. J Comput Appl Math 185(1):107–132

    Article  MathSciNet  MATH  Google Scholar 

  • Van Gelder L, Das P, Janssen H, Roels S (2014) Comparative study of metamodelling techniques in building energy simulation: guidelines for practitioners. Simul Model Pract Theory 49:245–257

    Article  Google Scholar 

  • Wang H, Tang L, Li GY (2011) Adaptive MLS-HDMR metamodeling techniques for high dimensional problems. Expert Syst Appl 38(11):14117–14126

    Google Scholar 

  • Wang H, Chen LM, Ye F, Chen L (2017) Global sensitivity analysis for fiber reinforced composite fiber path based on D-MORPH-HDMR algorithm. Struct Multidiscip Optim 56(3):697–712

    Article  MathSciNet  Google Scholar 

  • Xie SJ, Pan BS, Du XP (2017) High dimensional model representation for hybrid reliability analysis with dependent interval variables constrained within ellipsoids. Struct Multidiscip Optim 56(6):1493–1505

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Xu SL, Liu HT, Wang XF, Jiang XM (2014) A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation. J Mech Des 136(7):071009

    Article  Google Scholar 

  • Yang QW, Xue DY (2015) Comparative study on influencing factors in adaptive metamodeling. Eng Comput 31(3):561–577

    Article  Google Scholar 

  • Zeng P (2009) Fundamentals of finite element analysis. Higher Education Press, Beijing

    Google Scholar 

  • Zhang N, Wang P, Dong HC (2019) Research on high-dimensional model representation with various metamodels. Eng Optim 51(8):1336–1351

    Article  Google Scholar 

  • Zhang J, Yue XX, Qiu JJ, Zhang MY, Wang XM (2021a) A unified ensemble of surrogates with global and local measures for global metamodelling. Eng Optim 53(3):474–495

  • Zhang J, Yue XX, Qiu JJ, Zhuo LJ, Zhu JG (2021b) Sparse polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for global sensitivity analysis. Mech Syst Signal Process (in press)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11872190, 51805221), Six Talent Peaks Project in Jiangsu Province (Grant No. 2017-KTHY-010), and Research Start-up Foundation for Jinshan Distinguished Professor at Jiangsu University (Grant No. 4111480003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The original codes for the illustrative example in Section 3.4 and fourteen benchmark functions and five engineering examples in Section 4 are available in the supplementary materials, i.e., IllustrativeExample.m, F1.m ~ F15.m, and E1.m ~ E5.m.

Additional information

Responsible Editor: Erdem Acar

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(TAR 22516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Zhang, J., Gong, W. et al. An adaptive PCE-HDMR metamodeling approach for high-dimensional problems. Struct Multidisc Optim 64, 141–162 (2021). https://doi.org/10.1007/s00158-021-02866-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02866-7

Keywords

Navigation