Skip to main content
Log in

Generative design of stiffened plates based on homogenization method

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Stiffened plates are widely used in aerospace structures as load-bearing components. In order to obtain a novel design of stiffened structures with excellent performance, a generative design method of stiffened plates (GDMSP) based on the homogenization method is proposed in this paper, which optimizes the stiffener layout based on an equivalent model. Then, the detailed model can then be obtained by extracting the stiffener path from the discrete distribution of stiffener angles. Moreover, the optimized design can be obtained by size optimization based on the detailed model. Two examples are used to illustrate the proposed framework, including the stiffness maximization of a rectangle stiffener plate and the buckling load maximization of a square stiffener plate. The optimized stiffener configurations are characterized by streamlines and uniform lines, respectively. For the first example, the stiffness of the stiffener design has an improvement of 17%. For the second example, the optimized design improves the buckling load by 35%. Results indicate that the proposed method can effectively provide a novel generative design for stiffened plates. Moreover, the obtained results have a clear stiffener path and have a noticeable improvement in performance, which can be directly used to establish a detailed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550:84

    Article  Google Scholar 

  • Ansola R, Canales J, Tárrago JA, Rasmussen J (2002) An integrated approach for shape and topology optimization of shell structures. Comput Struct 80:449–458. https://doi.org/10.1016/S0045-7949(02)00019-6

    Article  Google Scholar 

  • Bojczuk D, Szteleblak W (2008) Optimization of layout and shape of stiffeners in 2D structures. Comput Struct 86:1436–1446

    Article  Google Scholar 

  • Bruyneel M (2011) SFP–a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidisc Optim 43:17–27

    Article  Google Scholar 

  • Bushnell D (1993) Optimization of composite, stiffened, imperfect panels under combined loads for service in the postbuckling regime. Comput Methods Appl Mech Eng 103:43–114. https://doi.org/10.1016/0045-7825(93)90041-U

    Article  MATH  Google Scholar 

  • Cai Y, Xu L, Cheng G (2014) Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int J Solids Struct 51:284–292

    Article  Google Scholar 

  • Cheng K-T, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323

    Article  MathSciNet  Google Scholar 

  • Cheng G, Cai Y, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29:550–556

    Article  MathSciNet  Google Scholar 

  • Chung J, Lee K (1997) Optimal design of rib structures using the topology optimization technique. Proc Inst Mech Eng -- Part C 211:425–437

    Article  Google Scholar 

  • Ding X, Yamazaki K (2004) Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Struct Multidisc Optim 26:99–110

    Article  Google Scholar 

  • Gao T, Zhang W, Pierre D (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114

    Article  Google Scholar 

  • Gersborg AR, Andreasen CS (2011) An explicit parameterization for casting constraints in gradient driven topology optimization. Struct Multidisc Optim 44:875–881

    Article  Google Scholar 

  • Hao P, Wang B, Li G (2012) Surrogate-based optimum design for stiffened shells with adaptive sampling. AIAA J 50:2389–2407

    Article  Google Scholar 

  • Hao P, Wang B, Tian K, Li G, Du K, Niu F (2016) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54:1–14

    Article  Google Scholar 

  • Hao P, Liu DC, Zhang KP, Yuan Y, Wang B, Li G, Zhang X (2021) Intelligent layout design of curvilinearly stiffened panels via deep learning-based method. Mater Des 197:109180

    Article  Google Scholar 

  • Hirschler T, Bouclier R, Duval A, Elguedj T, Morlier J (2019) The embedded isogeometric Kirchhoff-Love shell: from design to shape optimization of non-conforming stiffened multipatch structures. Comput Methods Appl Mech Eng 349:774–797

    Article  MathSciNet  Google Scholar 

  • Hu T, Ding X, Shen L, Zhang H (2020) Improved adaptive growth method of stiffeners for three-dimensional box structures with respect to natural frequencies. Comput Struct 239:106330. https://doi.org/10.1016/j.compstruc.2020.106330

    Article  Google Scholar 

  • Jármai K, Snyman JA, Farkas J (2006) Minimum cost design of a welded orthogonally stiffened cylindrical shell. Comput Struct 84:787–797

    Article  Google Scholar 

  • Ji J, Ding X, Xiong M (2014) Optimal stiffener layout of plate/shell structures by bionic growth method. Comput Struct 135:88–99. https://doi.org/10.1016/j.compstruc.2014.01.022

    Article  Google Scholar 

  • Kegl M, Brank B (2006) Shape optimization of truss-stiffened shell structures with variable thickness. Comput Methods Appl Mech Eng 195:2611–2634. https://doi.org/10.1016/j.cma.2005.05.020

    Article  MATH  Google Scholar 

  • Lam YC, Santhikumar S (2003) Automated rib location and optimization for plate structures. Struct Multidisc Optim 25:35–45. https://doi.org/10.1007/s00158-002-0270-7

    Article  Google Scholar 

  • Lazarov BS, Wang F (2017) Maximum length scale in density based topology optimization. Comput Methods Appl Mech Eng 318:826–844

    Article  MathSciNet  Google Scholar 

  • Liu Y, Shimoda M (2015) Non-parametric shape optimization method for natural vibration design of stiffened shells. Comput Struct 146:20–31

    Article  Google Scholar 

  • Liu S, Li Q, Chen W, Hu R, Tong L (2015) H-DGTP—a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures. Struct Multidisc Optim 52:903–913

    Article  MathSciNet  Google Scholar 

  • Liu H, Li B, Yang Z, Hong J (2017) Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm. J Manuf Syst 43:375–384. https://doi.org/10.1016/j.jmsy.2017.02.002

    Article  Google Scholar 

  • Liu D, Hao P, Zhang K, Tian K, Wang B, Li G, Xu W (2020) On the integrated design of curvilinearly grid-stiffened panel with non-uniform distribution and variable stiffener profile. Mater Des 190:108556

    Article  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Steel Constr 91:158–167

    Google Scholar 

  • Lund E, Stegmann J (2010) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124

    Article  Google Scholar 

  • Oberndorfer JM, Achtziger W, Hörnlein HREM (1996) Two approaches for truss topology optimization: a comparison for practical use. Struct Optim 11:137–144

    Article  Google Scholar 

  • Schittkowski K (1986) NLPQL: A FORTRAN subroutine for solving constrained nonlinear programming problems. Ann Oper Res 5:485–500

    Article  MathSciNet  Google Scholar 

  • Slemp WCH, Bird RK, Kapania RK, Havens D, Norris A, Olliffe R (2011) Design, optimization, and evaluation of integrally stiffened Al-7050 panel with curved stiffeners. J Aircr 48:1163–1175

    Article  Google Scholar 

  • Miki Man & Cybernetics Conference Smc MBT-IS (1999) A parallel genetic algorithm with distributed environment scheme

  • ABAQUS Standard User's Manual Version 6.10[M] (2010) Pawtucket: Karlsson and Sorensen Inc.

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    Article  Google Scholar 

  • Sun Z, Cui R, Cui T, Liu C, Shi S, Guo X (2020) An optimization approach for stiffener layout of composite stiffened panels based on moving morphable components (MMCs). Acta Mech Solida Sin 33:650–662

    Article  Google Scholar 

  • Svanberg K (2010) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  Google Scholar 

  • Wang B, Hao P, Li G, Wang XJ, Tang XH, Luan Y (2014) Generatrix shape optimization of stiffened shells for low imperfection sensitivity. Science China 57:2012–2019

    Article  Google Scholar 

  • Wang B, Tian K, Zhou C, Hao P, Zheng Y, Ma Y, Wang J (2017) Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity. Aerosp Sci Technol 62:114–121

    Article  Google Scholar 

  • Wang D, Abdalla MM, Zhang W (2018) Sensitivity analysis for optimization design of non-uniform curved grid-stiffened composite (NCGC) structures. Compos Struct 193:224–236

    Article  Google Scholar 

  • Wang D, Abdalla MM, Wang Z-P, Su Z (2019) Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput Methods Appl Mech Eng 344:1021–1050

    Article  MathSciNet  Google Scholar 

  • Wang D, Yeo S-Y, Su Z, Wang Z-P, Abdalla MM (2020) Data-driven streamline stiffener path optimization (SSPO) for sparse stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput Methods Appl Mech Eng 365:113001

    Article  MathSciNet  Google Scholar 

  • Wang B, Zhou Y, Tian K, Wang G (2020) Novel implementation of extrusion constraint in topology optimization by Helmholtz-type anisotropic filter. Struct Multidisc Optim 62:2091–2100

    Article  Google Scholar 

  • Yan J, Cheng G, Liu L (2008) A Uniform Optimum Material Based Model for Concurrent Optimization of Thermoelastic Structures and Materials. Int J Simul Multidisci Des Optim 2:259–266

    Article  Google Scholar 

  • Yan J, Duan Z, Lund E, Wang J (2017) Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct Multidisc Optim 56:519–533. https://doi.org/10.1007/s00158-017-1750-0

    Article  Google Scholar 

  • Zhang S, Norato JA (2017) Optimal design of panel reinforcements with ribs made of plates. J Mech Des. https://doi.org/10.1115/1.4036999

    Article  Google Scholar 

  • Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidisc Optim 54:1173–1190. https://doi.org/10.1007/s00158-016-1466-6

    Article  MathSciNet  Google Scholar 

  • Zhang S, Gain AL, Norato JA (2020) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112930. https://doi.org/10.1016/j.cma.2020.112930

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao W, Kapania RK (2016) Buckling analysis of unitized curvilinearly stiffened composite panels. Compos Struct 135:365–382

    Article  Google Scholar 

  • Zhou Y, Tian K, Xu S, Wang B (2020) Two-scale buckling topology optimization for grid-stiffened cylindrical shells. Thin-Walled Struct 151:106725. https://doi.org/10.1016/j.tws.2020.106725

    Article  Google Scholar 

  • Zhou M, Fleury R, Shyy Y-K, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints. 9th AIAA/ISSMO symposium multidisciplinary analysis optimization. American Institute of Aeronautics and Astronautics

  • Zhu J-H, Gu X-J, Zhang W-H, Beckers P (2013) Structural design of aircraft skin stretch-forming die using topology optimization. J Comput Appl Math 246:278–288

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (11772078 and 11825202), the Project supported by Liaoning Provincial Natural Science Foundation (2019-YQ-01), and Liaoning Revitalization Talents Program (XLYC1907142 and XLYC1802020). Moreover, the authors gratefully acknowledge financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All the key formulas for the calculation have been provided in the article. If the reader is interested, we can provide the Matlab code.

Additional information

Responsible Editor: Graeme James Kennedy

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The sensitivity analysis of the linear buckling load

Appendix: The sensitivity analysis of the linear buckling load

In this paper, the linear buckling load is calculated with the finite element method by solving the eigenvalue equation as follows.

$${{\{ }}{\mathbf{K}} + \lambda_{j} {\mathbf{K}}_{{\varvec{\sigma}}} {{\} }}{{\varvec{\Phi}}}_{j} = {\mathbf{0}} \,$$
(22)

For the DMO, the sensitivities are necessary. The sensitivities are calculated with the adjoint method, which is briefly derived as follows. The direct approach to obtain the eigenvalue sensitivity in case of a distinct, i.e., the simple eigenvalue \(\lambda_{j}\) is to differentiate Eq. (22) to the design variable \(x_{ij}\) premultiply by \({{\varvec{\Phi}}}_{j}^{T}\) and make use of Eq. (22). Then the following expression can be obtained as

$$\frac{{d\lambda_{j} }}{{dx_{ij} }} = - {{\varvec{\Phi}}}_{j}^{T} \left( {\frac{{d{\mathbf{K}}}}{{dx_{ij} }} + \lambda_{j} \frac{{d{\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{dx_{ij} }}} \right){{\varvec{\Phi}}}_{j}$$
(23)

where it has been assumed that the eigenvectors have been \({\mathbf{K}}_{{{\varvec{\upsigma}}}}\) -orthonormalized, such that \({{\varvec{\Phi}}}_{i}^{T} {\mathbf{K}}_{{{\varvec{\upsigma}}}} {{\varvec{\Phi}}}_{i} = 1\). The geometric matrix is an implicit function of the displacement field, i.e., \({\mathbf{K}}_{{{\varvec{\upsigma}}}} = {\mathbf{K}}_{{{\varvec{\upsigma}}}} \left( {{\mathbf{u}}({\mathbf{x),x}}} \right)\), which has to be taken into account as

$$\frac{{d{\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{dx_{ij} }} = \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial x_{ij} }} + \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial {\mathbf{u}}}}\frac{{d{\mathbf{u}}}}{{dx_{ij} }}$$
(24)

Then the static equilibrium equation \({\mathbf{K}}{\mathbf{u}}{\mathbf{ = F}}\) is differentiated to the design variable \(x_{ij}\) as

$${\mathbf{K}}\frac{{d{\mathbf{u}}}}{{dx_{ij} }} = \frac{{\partial {\mathbf{F}}}}{{\partial x_{ij} }} - \frac{{\partial {\mathbf{K}}}}{{\partial x_{ij} }}{\mathbf{u}}$$
(25)

where the load sensitivity \(\partial {\mathbf{F}}/\partial x_{ij}\) is zeros. Then, substituting Eq. (25) into Eq. (24) yields

$$\frac{{d{\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{dx_{ij} }} = \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial x_{ij} }} - \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial {\mathbf{u}}}}{\mathbf{K}}^{{{\mathbf{ - 1}}}} \frac{{d{\mathbf{K}}}}{{dx_{ij} }}{\mathbf{u}}$$
(26)

Thus, the adjoint vector \({{\varvec{\Lambda}}}\) that satisfies Eq. (27) can be introduced.

$${\mathbf{K\Lambda }} = \left( {{{\varvec{\Phi}}}_{j}^{T} \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial {\mathbf{u}}}}{{\varvec{\Phi}}}_{j} } \right)^{T}$$
(27)

Finally, substituting the adjoint vector \({{\varvec{\Lambda}}}\) into Eq. (23), the full analytically design sensitivities can be obtained as follows:

$$\frac{{d\lambda_{j} }}{{dx_{ij} }} = - \left( {{{\varvec{\Phi}}}_{j}^{T} \frac{{d{\mathbf{K}}}}{{dx_{ij} }}{{\varvec{\Phi}}}_{j} + \lambda_{j} {{\varvec{\Phi}}}_{j}^{T} \frac{{\partial {\mathbf{K}}_{{{\varvec{\upsigma}}}} }}{{\partial x_{ij} }}{{\varvec{\Phi}}}_{j} - \lambda_{j} {{\varvec{\Lambda}}}^{T} \frac{{d{\mathbf{K}}}}{{dx_{ij} }}{\mathbf{u}}} \right)$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, F., Aage, N. et al. Generative design of stiffened plates based on homogenization method. Struct Multidisc Optim 64, 3951–3969 (2021). https://doi.org/10.1007/s00158-021-03070-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03070-3

Keywords

Navigation