Skip to main content
Log in

Cosmological magnetic fields: their generation, evolution and observation

  • REVIEW ARTICLE
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

We review the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding Universe filled with the cosmic plasma and provide a critical review of the literature on the subject. We put special emphasis on the prospects for observational tests of the proposed cosmological magnetogenesis scenarios using radio and gamma-ray astronomy and ultra-high-energy cosmic rays. We argue that primordial magnetic fields are observationally testable. They lead to magnetic fields in the intergalactic medium with magnetic field strength and correlation length in a well defined range.

We also state the unsolved questions in this fascinating open problem of cosmology and propose future observations to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. In statistical mechanics correlations decay exponentially on scales larger than the correlation scale while our correlations usually decay like a power law. Therefore, even though, most of the magnetic/kinetic field energy is concentrated on scales close to λ B , respectively, λ K , this is not true for all its cumulants.

  2. Even if we have initially λ B =λ i ((tt i )/τ)−2/5 after a few Hubble times this very turns into λ B =λ (t/t )−2/5, where λ denotes the correlation scale at t .

References

  • Abbasi RU, Abu-Zayyad T, Archbold G, Atkins R, Bellido J, Belov K, Belz JW, BenZvi S, Bergman DR, Boyer J, Burt GW, Cao Z, Clay R, Connolly BM, Dawson B, Deng W, Fedorova Y, Findlay J, Finley CB, Hanlon WF, Hughes GA, Huntemeyer P, Jui CCH, Kim K, Kirn MA, Knapp B, Loh EC, Maetas MM, Martens K, Martin G, Manago N, Mannel EJ, Matthews JAJ, Matthews JN, O’Neill A, Perera L, Reil K, Riehle R, Roberts MD, Sasaki M, Seman M, Schnetzer SR, Simpson K, Smith JD, Snow R, Sokolsky P, Song C, Springer RW, Stokes BT, Thomas JR, Thomas SB, Thomson GB, Westerhoff S, Wiencke LR, Zech A (High Resolution Fly’s Eye Collaboration) (2005) A study of the composition of ultra-high-energy cosmic rays using the high-resolution fly’s eye. Astrophys J 622:910–926. doi:10.1086/427931. arXiv:astro-ph/0407622

    ADS  Google Scholar 

  • Abbasi RU, Abu-Zayyad T, Allen M, Amman JF, Archbold G, Belov K, Belz JW, Benzvi SY, Bergman DR, Blake SA, Boyer JH, Brusova OA, Burt GW, Cannon C, Cao Z, Deng W, Fedorova Y, Findlay J, Finley CB, Gray RC, Hanlon WF, Hoffman CM, Holzscheiter MH, Hughes G, Hüntemeyer P, Ivanov D, Jones BF, Jui CCH, Kim K, Kirn MA, Knapp BC, Loh EC, Maestas MM, Manago N, Mannel EJ, Marek LJ, Martens K, Matthews JN, Moore SA, O’Neill A, Painter CA, Perera L, Reil K, Riehle R, Roberts MD, Rodriguez D, Sasaki N, Schnetzer SR, Scott LM, Seman M, Sinnis G, Smith JD, Snow R, Sokolsky P, Song C, Springer RW, Stokes BT, Stratton SR, Thomas JR, Thomas SB, Thomson GB, Tupa D, Wiencke LR, Zech A, Zhang X (High Resolution Fly’s Eye Collaboration) (2008a) Search for correlations between HiRes stereo events and active galactic nuclei. Astropart Phys 30:175–179. 10.1016/j.astropartphys.2008.08.004

    ADS  Google Scholar 

  • Abbasi RU, Abu-Zayyad T, Allen M, Amman JF, Archbold G, Belov K, Belz JW, Ben Zvi SY, Bergman DR, Blake SA, Brusova OA, Burt GW, Cannon C, Cao Z, Connolly BC, Deng W, Fedorova Y, Finley CB, Gray RC, Hanlon WF, Hoffman CM, Holzscheiter MH, Hughes G, Hüntemeyer P, Jones BF, Jui CCH, Kim K, Kirn MA, Loh EC, Maestas MM, Manago N, Marek LJ, Martens K, Matthews JAJ, Matthews JN, Moore SA, O’Neill A, Painter CA, Perera L, Reil K, Riehle R, Roberts M, Rodriguez D, Sasaki N, Schnetzer SR, Scott LM, Sinnis G, Smith JD, Sokolsky P, Song C, Springer RW, Stokes BT, Thomas SB, Thomas JR, Thomson GB, Tupa D, Westerhoff S, Wiencke LR, Zhang X, Zech A (2008b) First observation of the Greisen–Zatsepin–Kuzmin suppression. Phys Rev Lett 100(10):101101. doi:10.1103/PhysRevLett.100.101101. arXiv:astro-ph/0703099

    ADS  Google Scholar 

  • Abbasi RU, Abu-Zayyad T, Al-Seady M, Allen M, Amman JF, Anderson RJ, Archbold G, Belov K, Belz JW, Bergman DR, Blake SA, Brusova OA, Burt GW, Cannon C, Cao Z, Deng W, Fedorova Y, Finley CB, Gray RC, Hanlon WF, Hoffman CM, Holzscheiter MH, Hughes G, Hüntemeyer P, Jones BF, Jui CCH, Kim K, Kirn MA, Loh EC, Liu J, Lundquist JP, Maestas MM, Manago N, Marek LJ, Martens K, Matthews JAJ, Matthews JN, Moore SA, O’Neill A, Painter CA, Perera L, Reil K, Riehle R, Roberts M, Rodriguez D, Sasaki N, Schnetzer SR, Scott LM, Sinnis G, Smith JD, Sokolsky P, Song C, Springer RW, Stokes BT, Stratton S, Thomas SB, Thomas JR, Thomson GB, Tupa D, Zech A, Zhang X (2010a) Indications of proton-dominated cosmic-ray composition above 1.6 EeV. Phys Rev Lett 104(16):161101. doi:10.1103/PhysRevLett.104.161101. arXiv:0910.4184

    ADS  Google Scholar 

  • Abbasi RU, Abu-Zayyad T, Allen M, Amann JF, Archbold G, Belov K, Belz JW, Bergman DR, Blake SA, Brusova OA, Burt GW, Cannon C, Cao Z, Deng W, Fedorova Y, Findlay J, Finley CB, Gray RC, Hanlon WF, Hoffman CM, Holzscheiter MH, Hughes G, Hüntemeyer P, Ivanov D, Jones BF, Jui CCH, Kim K, Kirn MA, Koers H, Loh EC, Maestas MM, Manago N, Marek LJ, Martens K, Matthews JAJ, Matthews JN, Moore SA, O’Neill A, Painter CA, Perera L, Reil K, Riehle R, Roberts MD, Rodriguez D, Sasaki M, Schnetzer SR, Scott LM, Sinnis G, Smith JD, Sokolsky P, Song C, Springer RW, Stokes BT, Stratton SR, Thomas JR, Thomas SB, Thomson GB, Tinyakov P, Tupa D, Wiencke LR, Zech A, Zhang X (High Resolution Fly’s Eye Collaboration) (2010b) Analysis of large-scale anisotropy of ultra-high energy cosmic rays in HiRes data. Astrophys J Lett 713:L64–L68. doi:10.1088/2041-8205/713/1/L64. arXiv:1002.1444

    ADS  Google Scholar 

  • Abdo AA, Allen B, Berley D, Casanova S, Chen C, Coyne DG, Dingus BL, Ellsworth RW, Fleysher L, Fleysher R, Gonzalez MM, Goodman JA, Hays E, Hoffman CM, Hopper B, Hüntemeyer PH, Kolterman BE, Lansdell CP, Linnemann JT, McEnery JE, Mincer AI, Nemethy P, Noyes D, Ryan JM, Saz Parkinson PM, Shoup A, Sinnis G, Smith AJ, Sullivan GW, Vasileiou V, Walker GP, Williams DA, Xu XW, Yodh GB (2007) TeV gamma-ray sources from a survey of the galactic plane with milagro. Astrophys J Lett 664:L91–L94. doi:10.1086/520717. arXiv:0705.0707

    ADS  Google Scholar 

  • Abraham J, Abreu P, Aglietta M, Aguirre C, Allard D, Allekotte I, Allen J, Allison P, Alvarez C et al. (Pierre Auger Collaboration) (2007) Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318:938. doi:10.1126/science.1151124. arXiv:0711.2256

    ADS  Google Scholar 

  • Abraham J, Abreu P, Aglietta M, Aguirre C, Allard D, Allekotte I, Allen J, Allison P, Alvarez-Muñiz J et al. (Pierre Auger Collaboration) (2008a) Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart Phys 29:188. doi:10.1016/j.astropartphys.2008.01.002. arXiv:0712.2843

    ADS  Google Scholar 

  • Abraham J, Abreu P, Aglietta M, Aguirre C, Allard D, Allekotte I, Allen J, Allison P, Alvarez-Muñiz J, Ambrosio M et al. (2008b) Observation of the suppression of the flux of cosmic rays above 4×1019 eV. Phys Rev Lett 101(6):061101. doi:10.1103/PhysRevLett.101.061101. arXiv:0806.4302

    ADS  Google Scholar 

  • Abraham J, Abreu P, Aglietta M, Ahn EJ, Allard D, Allekotte I, Allen J, Alvarez-Muñiz J, Ambrosio M, Anchordoqui L et al. (2010) Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys Rev Lett 104(9):091101. doi:10.1103/PhysRevLett.104.091101. arXiv:1002.0699

    ADS  Google Scholar 

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Abramowski A, Acero F, Aharonian F, Akhperjanian AG, Anton G, Balenderan S, Balzer A, Barnacka A, Becherini Y, Becker Tjus J, Bernlöhr K, Birsin E, Biteau J, Bochow A, Boisson C, Bolmont J, Bordas P, Brucker J, Brun F, Brun P, Bulik T, Carrigan S, Casanova S, Cerruti M, Chadwick PM, Charbonnier A, Chaves RCG, Cheesebrough A, Cologna G, Conrad J, Couturier C, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, deWilt P, Dickinson HJ, Djannati-Ataï A, Domainko W, O’C Drury L, Dubus G, Dutson K, Dyks J, Dyrda M, Egberts K, Eger P, Espigat P, Fallon L, Farnier C, Fegan S, Feinstein F, Fernandes MV, Fernandez D, Fiasson A, Fontaine G, Förster A, Füßling M, Gajdus M, Gallant YA, Garrigoux T, Gast H, Giebels B, Glicenstein JF, Glück B, Göring D, Grondin MH, Häffner S, Hague JD, Hahn J, Hampf D, Harris J, Heinz S, Heinzelmann G, Henri G, Hermann G, Hillert A, Hinton JA, Hofmann W, Hofverberg P, Holler M, Horns D, Jacholkowska A, Jahn C, Jamrozy M, Jung I, Kastendieck MA, Katarzyński K, Katz U, Kaufmann S, Khélifi B, Klochkov D, Kluźniak W, Kneiske T, Komin N, Kosack K, Kossakowski R, Krayzel F, Laffon H, Lamanna G, Lenain JP, Lennarz D, Lohse T, Lopatin A, Lu CC, Marandon V, Marcowith A, Masbou J, Maurin G, Maxted N, Mayer M, McComb TJL, Medina MC, Méhault J, Menzler U, Moderski R, Mohamed M, Moulin E, Naumann CL, Naumann-Godo M, de Naurois M, Nedbal D, Nguyen N, Niemiec J, Nolan SJ, Ohm S, de Oña Wilhelmi E, Opitz B, Ostrowski M, Oya I, Panter M, Parsons D, Paz Arribas M, Pekeur NW, Pelletier G, Perez J, Petrucci PO, Peyaud B, Pita S, Pühlhofer G, Punch M, Quirrenbach A, Raue M, Reimer A, Reimer O, Renaud M, de los Reyes R, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Sahakian V, Sanchez DA, Santangelo A, Schlickeiser R, Schulz A, Schwanke U, Schwarzburg S, Schwemmer S, Sheidaei F, Skilton JL, Sol H, Spengler G, Stawarz Ł, Steenkamp R, Stegmann C, Stinzing F, Stycz K, Sushch I, Szostek A, Tavernet JP, Terrier R, Tluczykont M, Valerius K, van Eldik C, Vasileiadis G, Venter C, Viana A, Vincent P, Völk HJ, Volpe F, Vorobiov S, Vorster M, Wagner SJ, Ward M, White R, Wierzcholska A, Wouters D, Zacharias M, Zajczyk A, Zdziarski AA, Zech A, Zechlin HS (HESS Collaboration) (2012a) Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with HESS arXiv:1212.3409

  • Abramowski A, Acero F, Aharonian F, Akhperjanian AG, Anton G, Balzer A, Barnacka A, Barres de Almeida U, Becherini Y, Becker J, Behera B, Bernloehr K, Birsin E, Biteau J, Bochow A, Boisson C, Bolmont J, Bordas P, Brucker J, Brun F, Brun P, Bulik T, Buesching I, Carrigan S, Casanova S, Cerruti M, Chadwick PM, Charbonnier A, Chaves RCG, Cheesebrough A, Chounet LM, Clapson AC, Coignet G, Cologna G, Conrad J, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, Dickinson HJ, Djannati-Ataie A, Domainko W, Drury LO, Dubois F, Dubus G, Dutson K, Dyks J, Dyrda M, Egberts K, Eger P, Espigat P, Fallon L, Farnier C, Feinstein F, Fernandes MV, Fiasson A, Fontaine G, Foerster A, Fuesling M, Gallant YA, Gast H, Gerard L, Gerbig D, Giebels B, Glicenstein JF, Glueck B, Goret P, Goering D, Haeffner S, Hague JD, Hampf D, Hauser M, Heinz S, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Hofverberg P, Holler M, Horns D, Jacholkowska A, de Jager OC, Jahn C, Jamrozy M, Jung I, Kastendieck MA, Katarzynski K, Katz U, Kaufmann S, Keogh D, Khangulyan D, Khelifi B, Klochkov D, Kluzniak W, Kneiske T, Komin N, Kosack K, Kossakowski R, Laffon H, Lamanna G, Lennarz D, Lohse T, Lopatin A, Lu CC, Marandon V, Marcowith A, Masbou J, Maurin D, Maxted N, Mayer M, McComb TJL, Medina MC, Mehault J, Moderski R, Moulin E, Naumann CL, Naumann-Godo M, de Naurois M, Nedbal D, Nekrassov D, Nguyen N, Nicholas B, Niemiec J, Nolan SJ, Ohm S, de Ona Wilhelmi E, Opitz B, Ostrowski M, Oya I, Panter M, Paz Arribas M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Puehlhofer G, Punch M, Quirrenbach A, Raue M, Rayner SM, Reimer A, Reimer O, Renaud M, de Los Reyes R, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Ruppel J, Sahakian V, Sanchez DA, Santangelo A, Schlickeiser R, Schoeck FM, Schulz A, Schwanke U, Schwarzburg S, Schwemmer S, Sheidaei F, Sikora M, Skilton JL, Sol H, Spengler G, Stawarz L, Steenkamp R, Stegmann C, Stinzing F, Stycz K, Sushch I, Szostek A, Tavernet JP, Terrier R, Tluczykont M, Valerius K, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Viana A, Vincent P, Voelk HJ, Volpe F, Vorobiov S, Vorster M, Wagner SJ, Ward M, White R, Wierzcholska A, Zacharias M, Zajczyk A, Zdziarski AA, Zech A, Zechlin HSL, Costamante L, Fegan S, Ajello M (HESS Collaboration) (2012b) Discovery of hard-spectrum γ-ray emission from the BL Lacertae object 1ES 0414+009. Astron Astrophys 538:A103. doi:10.1051/0004-6361/201118406. arXiv:1201.2044

    Google Scholar 

  • Abreu P, Aglietta M, Ahn EJ, Allard D, Allekotte I, Allen J, Alvarez Castillo J, Alvarez-Muñiz J, Ambrosio M et al (The Pierre Auger Collaboration) (2010) Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. arXiv:1009.1855

  • Abu-Zayyad T, Aida R, Allen M, Anderson R, Azuma R, Barcikowski E, Belz JW, Bergman DR, Blake SA, Cady R, Cheon BG, Chiba J, Chikawa M, Cho EJ, Cho WR, Fujii H, Fujii T, Fukuda T, Fukushima M, Hanlon W, Hayashi K, Hayashi Y, Hayashida N, Hibino K, Hiyama K, Honda K, Iguchi T, Ikeda D, Ikuta K, Inoue N, Ishii T, Ishimori R, Ivanov D, Iwamoto S, Jui CCH, Kadota K, Kakimoto F, Kalashev O, Kanbe T, Kasahara K, Kawai H, Kawakami S, Kawana S, Kido E, Kim HB, Kim HK, Kim JH, Kim JH, Kitamoto K, Kitamura S, Kitamura Y, Kobayashi K, Kobayashi Y, Kondo Y, Kuramoto K, Kuzmin V, Kwon YJ, Lim SI, Machida S, Martens K, Martineau J, Matsuda T, Matsuura T, Matsuyama T, Matthews JN, Minamino M, Miyata K, Murano Y, Myers I, Nagasawa K, Nagataki S, Nakamura T, Nam SW, Nonaka T, Ogio S, Ohnishi M, Ohoka H, Oki K, Oku D, Okuda T, Oshima A, Ozawa S, Park IH, Pshirkov MS, Rodriguez DC, Roh SY, Rubtsov G, Ryu D, Sagawa H, Sakurai N, Sampson AL, Scott LM, Shah PD, Shibata F, Shibata T, Shimodaira H, Shin BK, Shin JI, Shirahama T, Smith JD, Sokolsky P, Sonley TJ, Springer RW, Stokes BT, Stratton SR, Stroman T, Suzuki S, Takahashi Y, Takeda M, Taketa A, Takita M, Tameda Y, Tanaka H, Tanaka K, Tanaka M, Thomas SB, Thomson GB, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsunesada Y, Tsutsumi K, Tsuyuguchi Y, Uchihori Y, Udo S, Ukai H, Vasiloff G, Wada Y, Wong T, Wood M, Yamakawa Y, Yamane R, Yamaoka H, Yamazaki K, Yang J, Yoneda Y, Yoshida S, Yoshii H, Zhou X, Zollinger R, Zundel Z (2012a) Search for anisotropy of ultrahigh energy cosmic rays with the telescope array experiment. Astrophys J 757:26. doi:10.1088/0004-637X/757/1/26. arXiv:1205.5984

    ADS  Google Scholar 

  • Abu-Zayyad T, Aida R, Allen M, Anderson R, Azuma R, Barcikowski E, Belz JW, Bergman DR, Blake SA, Cady R, Cheon BG, Chiba J, Chikawa M, Cho EJ, Cho WR, Fujii H, Fujii T, Fukuda T, Fukushima M, Hanlon W, Hayashi K, Hayashi Y, Hayashida N, Hibino K, Hiyama K, Honda K, Iguchi T, Ikeda D, Ikuta K, Inoue N, Ishii T, Ishimori R, Ivanov D, Iwamoto S, Jui CCH, Kadota K, Kakimoto F, Kalashev O, Kanbe T, Kasahara K, Kawai H, Kawakami S, Kawana S, Kido E, Kim HB, Kim HK, Kim JH, Kim JH, Kitamoto K, Kitamura S, Kitamura Y, Kobayashi K, Kobayashi Y, Kondo Y, Kuramoto K, Kuzmin V, Kwon YJ, Lim SI, Machida S, Martens K, Martineau J, Matsuda T, Matsuura T, Matsuyama T, Matthews JN, Minamino M, Miyata K, Murano Y, Myers I, Nagasawa K, Nagataki S, Nakamura T, Nam SW, Nonaka T, Ogio S, Ohnishi M, Ohoka H, Oki K, Oku D, Okuda T, Oshima A, Ozawa S, Park IH, Pshirkov MS, Rodriguez DC, Roh SY, Rubtsov G, Ryu D, Sagawa H, Sakurai N, Sampson AL, Scott LM, Shah PD, Shibata F, Shibata T, Shimodaira H, Shin BK, Shin JI, Shirahama T, Smith JD, Sokolsky P, Sonley TJ, Springer RW, Stokes BT, Stratton SR, Stroman T, Suzuki S, Takahashi Y, Takeda M, Taketa A, Takita M, Tameda Y, Tanaka H, Tanaka K, Tanaka M, Thomas SB, Thomson GB, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsunesada Y, Tsutsumi K, Tsuyuguchi Y, Uchihori Y, Udo S, Ukai H, Vasiloff G, Wada Y, Wong T, Wood M, Yamakawa Y, Yamane R, Yamaoka H, Yamazaki K, Yang J, Yoneda Y, Yoshida S, Yoshii H, Zhou X, Zollinger RR, Zundel Z (2012b) The cosmic ray energy spectrum observed with the surface detector of the telescope array experiment. arXiv:1205.5067

  • Ackermann M, Ajello M, Allafort A, Schady P, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bellazzini R, Blandford RD, Bloom ED, Borgland AW, Bottacini E, Bouvier A, Bregeon J, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Cavazzuti E, Cecchi C, Charles E, Chaves RCG, Chekhtman A, Cheung CC, Chiang J, Chiaro G, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, Cutini S, D’Ammando F, de Palma F, Dermer CD, Digel SW, do Couto e Silva E, Domínguez A, Drell PS, Drlica-Wagner A, Favuzzi C, Fegan SJ, Focke WB, Franckowiak A, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grove JE, Guiriec S, Gustafsson M, Hadasch D, Hayashida M, Hays E, Jackson MS, Jogler T, Kataoka J, Knödlseder J, Kuss M, Lande J, Larsson S, Latronico L, Longo F, Loparco F, Lovellette MN, Lubrano P, Mazziotta MN, McEnery JE, Mehault J, Michelson PF, Mizuno T, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Tramacere A, Nuss E, Greiner J, Ohno M, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Perkins JS, Pesce-Rollins M, Piron F, Pivato G, Porter TA, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Reyes LC, Ritz S, Rau A, Romoli C, Roth M, Sánchez-Conde M, Sanchez DA, Scargle JD, Sgrò C, Siskind EJ, Spandre G, Spinelli P, Stawarz Ł, Suson DJ, Takahashi H, Tanaka T, Thayer JG, Thompson DJ, Tibaldo L, Tinivella M, Torres DF, Tosti G, Troja E, Usher TL, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Winer BL, Wood KS, Wood M (2012) The imprint of the extragalactic background light in the gamma-ray spectra of blazars. Science 338:1190. doi:10.1126/science.1227160. arXiv:1211.1671

    ADS  Google Scholar 

  • Adamek J, Durrer R, Fenu E, Vonlanthen M (2011) A large scale coherent magnetic field: interactions with free streaming particles and limits from the CMB. J Cosmol Astropart Phys 1106:017. doi:10.1088/1475-7516/2011/06/017. arXiv:1102.5235

    ADS  Google Scholar 

  • Adams JA, Danielsson UH, Grasso D, Rubinstein H (1996) Distortion of the acoustic peaks in the CMBR due to a primordial magnetic field. Phys Lett B 388:253–258. doi:10.1016/S0370-2693(96)01171-9. arXiv:astro-ph/9607043

    ADS  Google Scholar 

  • Adams JH Jr, Ahmad S, Albert JN, Allard D, Ambrosio M, Anchordoqui L, Anzalone A, Arai Y et al (The JEM-EUSO Collaboration) (2012) The JEM-EUSO mission: status and prospects in 2011. arXiv:1204.5065

  • Aguirre A, Hernquist L, Schaye J, Katz N, Weinberg DH, Gardner J (2001) Metal enrichment of the intergalactic medium in cosmological simulations. Astrophys J 561:521–549. doi:10.1086/323370. arXiv:astro-ph/0105065

    ADS  Google Scholar 

  • Aharonian FA (2004) Very high energy cosmic gamma radiation: a crucial window on the extreme Universe. World Scientific, Singapore

    Google Scholar 

  • Aharonian FA, Coppi PS, Voelk HJ (1994) Very high energy gamma rays from active galactic nuclei: cascading on the cosmic background radiation fields and the formation of pair halos. Astrophys J Lett 423:L5–L8. doi:10.1086/187222. arXiv:astro-ph/9312045

    ADS  Google Scholar 

  • Aharonian FA, Akhperjanian AG, Barrio JA, Bernlöhr K, Bolz O, Börst H, Bojahr H, Contreras JL, Cortina J, Denninghoff S, Fonseca V, Gonzalez JC, Götting N, Heinzelmann G, Hermann G, Heusler A, Hofmann W, Horns D, Ibarra A, Iserlohe C, Jung I, Kankanyan R, Kestel M, Kettler J, Kohnle A, Konopelko A, Kornmeyer H, Kranich D, Krawczynski H, Lampeitl H, Lorenz E, Lucarelli F, Magnussen N, Mang O, Meyer H, Mirzoyan R, Moralejo A, Padilla L, Panter M, Plaga R, Plyasheshnikov A, Prahl J, Pühlhofer G, Rhode W, Röhring A, Rowell GP, Sahakian V, Samorski M, Schilling M, Schröder F, Siems M, Stamm W, Tluczykont M, Völk HJ, Wiedner C, Wittek W (2001) Search for a TeV gamma-ray halo of Mkn 501. Astron Astrophys 366:746–751. doi:10.1051/0004-6361:20000481

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Breitling F, Brown AM, Chadwick PM, Chounet LM, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, Drury LO, Dubus G, Emmanoulopoulos D, Espigat P, Feinstein F, Fontaine G, Fuchs Y, Funk S, Gallant YA, Giebels B, Gillessen S, Glicenstein JF, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, Jacholkowska A, de Jager OC, Khélifi B, Klages S, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Leroy N, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Raux J, Rayner SM, Reimer A, Reimer O, Ripken J, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Spangler D, Steenkamp R, Stegmann C, Tavernet JP, Terrier R, Théoret CG, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vincent P, Völk HJ, Wagner SJ (2006) A low level of extragalactic background light as revealed by γ-rays from blazars. Nature 440:1018–1021. doi:10.1038/nature04680. arXiv:astro-ph/0508073

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Barres de Almeida U, Bazer-Bachi AR, Behera B, Beilicke M, Benbow W, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brion E, Brown AM, Bühler R, Bulik T, Büsching I, Boutelier T, Carrigan S, Chadwick PM, Chounet LM, Clapson AC, Coignet G, Cornils R, Costamante L, Dalton M, Degrange B, Dickinson HJ, Djannati-Ataï A, Domainko W, O’C Drury L, Dubois F, Dubus G, Dyks J, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Feinstein F, Fiasson A, Förster A, Fontaine G, Funk S, Füßling M, Gallant YA, Giebels B, Glicenstein JF, Glück B, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jung I, Katarzyński K, Kendziorra E, Kerschhaggl M, Khélifi B, Keogh D, Komin N, Kosack K, Lamanna G, Latham IJ, Lemière A, Lemoine-Goumard M, Lenain JP, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin D, Maurin G, McComb TJL, Moderski R, Moulin E, de Naurois M, Nedbal D, Nolan SJ, Ohm S, Olive JP, de Oña Wilhelmi E, Orford KJ, Osborne JL, Ostrowski M, Panter M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Renaud M, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Rudak B, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck F, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Stawarz Ł, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, Zech A (2007a) New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200. Astron Astrophys 475:L9–L13. doi:10.1051/0004-6361:20078462. arXiv:0709.4584

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Barres de Almeida U, Bazer-Bachi AR, Behera B, Beilicke M, Benbow W, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brion E, Brown AM, Bühler R, Bulik T, Büsching I, Boutelier T, Carrigan S, Chadwick PM, Chounet LM, Clapson AC, Coignet G, Cornils R, Costamante L, Dalton M, Degrange B, Dickinson HJ, Djannati-Ataï A, Domainko W, O’C Drury L, Dubois F, Dubus G, Dyks J, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Feinstein F, Fiasson A, Förster A, Fontaine G, Funk S, Füßling M, Gallant YA, Giebels B, Glicenstein JF, Glück B, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jung I, Katarzyński K, Kendziorra E, Kerschhaggl M, Khélifi B, Keogh D, Komin N, Kosack K, Lamanna G, Latham IJ, Lemière A, Lemoine-Goumard M, Lenain JP, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin D, Maurin G, McComb TJL, Moderski R, Moulin E, de Naurois M, Nedbal D, Nolan SJ, Ohm S, Olive JP, de Oña Wilhelmi E, Orford KJ, Osborne JL, Ostrowski M, Panter M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Renaud M, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Rudak B, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck F, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Stawarz Ł, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, Zech A (2007b) Discovery of VHE γ-rays from the distant BL Lacertae 1ES 0347-121. Astron Astrophys 473:L25–L28. doi:10.1051/0004-6361:20078412. arXiv:0708.3021

    ADS  Google Scholar 

  • Aharonian F, Buckley J, Kifune T, Sinnis G (2008) High energy astrophysics with ground-based gamma ray detectors. Rep Prog Phys 71(9):096901. doi:10.1088/0034-4885/71/9/096901

    ADS  Google Scholar 

  • Ahonen J, Enqvist K (1998) Magnetic field generation in first order phase transition bubble collisions. Phys Rev D 57:664–673. doi:10.1103/PhysRevD.57.664. arXiv:hep-ph/9704334

    ADS  Google Scholar 

  • Albert J, Aliu E, Anderhub H, Antonelli LA, Antoranz P, Backes M, Baixeras C, Barrio JA, Bartko H, Bastieri D, Becker JK, Bednarek W, Berger K, Bernardini E, Bigongiari C, Biland A, Bock RK, Bonnoli G, Bordas P, Bosch-Ramon V, Bretz T, Britvitch I, Camara M, Carmona E, Chilingarian A, Commichau S, Contreras JL, Cortina J, Costado MT, Covino S, Curtef V, Dazzi F, De Angelis A, Cea del Pozo ED, de los Reyes R, De Lotto B, De Maria M, De Sabata F, Mendez CD, Dominguez A, Dorner D, Doro M, Errando M, Fagiolini M, Ferenc D, Fernández E, Firpo R, Fonseca MV, Font L, Galante N, García López RJ, Garczarczyk M, Gaug M, Goebel F, Hayashida M, Herrero A, Höhne D, Hose J, Hsu CC, Huber S, Jogler T, Kneiske TM, Kranich D, La Barbera A, Laille A, Leonardo E, Lindfors E, Lombardi S, Longo F, López M, Lorenz E, Majumdar P, Maneva G, Mankuzhiyil N, Mannheim K, Maraschi L, Mariotti M, Martínez M, Mazin D, Meucci M, Meyer M, Miranda JM, Mirzoyan R, Mizobuchi S, Moles M, Moralejo A, Nieto D, Nilsson K, Ninkovic J, Otte N, Oya I, Panniello M, Paoletti R, Paredes JM, Pasanen M, Pascoli D, Pauss F, Pegna RG, Perez-Torres MA, Persic M, Peruzzo L, Piccioli A, Prada F, Prandini E, Puchades N, Raymers A, Rhode W, Ribó M, Rico J, Rissi M, Robert A, Rügamer S, Saggion A, Saito TY, Salvati M, Sanchez-Conde M, Sartori P, Satalecka K, Scalzotto V, Scapin V, Schmitt R, Schweizer T, Shayduk M, Shinozaki K, Shore SN, Sidro N, Sierpowska-Bartosik A, Sillanpää A, Sobczynska D, Spanier F, Stamerra A, Stark LS, Takalo L, Tavecchio F, Temnikov P, Tescaro D, Teshima M, Tluczykont M, Torres DF, Turini N, Vankov H, Venturini A, Vitale V, Wagner RM, Wittek W, Zabalza V, Zandanel F, Zanin R, Zapatero J (MAGIC Collaboration) (2008) Very-high-energy gamma rays from a distant quasar: how transparent is the Universe? Science 320:1752. doi:10.1126/science.1157087. arXiv:0807.2822

    ADS  Google Scholar 

  • Aleksić J, Antonelli LA, Antoranz P, Backes M, Baixeras C, Barrio JA, Bastieri D, Becerra González J, Bednarek W, Berdyugin A, Berger K, Bernardini E, Biland A, Blanch O, Bock RK, Bonnoli G, Bordas P, Borla Tridon D, Bosch-Ramon V, Bose D, Braun I, Bretz T, Britzger D, Camara M, Carmona E, Carosi A, Colin P, Commichau S, Contreras JL, Cortina J, Costado MT, Covino S, Dazzi F, de Angelis A, de Cea Del Pozo E, de Los Reyes R, de Lotto B, de Maria M, de Sabata F, Delgado Mendez C, Doert M, Domínguez A, Dominis Prester D, Dorner D, Doro M, Elsaesser D, Errando M, Ferenc D, Fonseca MV, Font L, García López RJ, Garczarczyk M, Gaug M, Godinovic N, Hadasch D, Herrero A, Hildebrand D, Höhne-Mönch D, Hose J, Hrupec D, Hsu CC, Jogler T, Klepser S, Krähenbühl T, Kranich D, La Barbera A, Laille A, Leonardo E, Lindfors E, Lombardi S, Longo F, López M, Lorenz E, Majumdar P, Maneva G, Mankuzhiyil N, Mannheim K, Maraschi L, Mariotti M, Martínez M, Mazin D, Meucci M, Miranda JM, Mirzoyan R, Miyamoto H, Moldón J, Moles M, Moralejo A, Nieto D, Nilsson K, Ninkovic J, Orito R, Oya I, Paiano S, Paoletti R, Paredes JM, Partini S, Pasanen M, Pascoli D, Pauss F, Pegna RG, Perez-Torres MA, Persic M, Peruzzo L, Prada F, Prandini E, Puchades N, Puljak I, Reichardt I, Rhode W, Ribó M, Rico J, Rissi M, Rügamer S, Saggion A, Saito TY, Salvati M, Sánchez-Conde M, Satalecka K, Scalzotto V, Scapin V, Schultz C, Schweizer T, Shayduk M, Shore SN, Sierpowska-Bartosik A, Sillanpää A, Sitarek J, Sobczynska D, Spanier F, Spiro S, Stamerra A, Steinke B, Struebig JC, Suric T, Takalo L, Tavecchio F, Temnikov P, Terzic T, Tescaro D, Teshima M, Torres DF, Vankov H, Wagner RM, Weitzel Q, Zabalza V, Zandanel F, Zanin R, Neronov A, Semikoz DV (2010) Search for an extended VHE γ-ray emission from Mrk 421 and Mrk 501 with the MAGIC telescope. Astron Astrophys 524:A77. doi:10.1051/0004-6361/201014747. arXiv:1004.1093

    ADS  Google Scholar 

  • Amenomori M, Bi XJ, Chen D, Cui SW, Danzengluobu, Ding LK, Ding XH, Fan C, Feng CF, Feng Z, Feng ZY, Gao XY, Geng QX, Gou QB, Guo HW, He HH, He M, Hibino K, Hotta N, Hu H, Hu HB, Huang J, Huang Q, Jia HY, Jiang L, Kajino F, Kasahara K, Katayose Y, Kato C, Kawata K, Labaciren, Le GM, Li AF, Li HC, Li JY, Liu C, Lou YQ, Lu H, Meng XR, Mizutani K, Mu J, Munakata K, Nanjo H, Nishizawa M, Ohnishi M, Ohta I, Ozawa S, Saito T, Saito TY, Sakata M, Sako TK, Shibata M, Shiomi A, Shirai T, Sugimoto H, Takita M, Tan YH, Tateyama N, Torii S, Tsuchiya H, Udo S, Wang B, Wang H, Wang Y, Wang YG, Wu HR, Xue L, Yamamoto Y, Yan CT, Yang XC, Yasue S, Ye ZH, Yu GC, Yuan AF, Yuda T, Zhang HM, Zhang JL, Zhang NJ, Zhang XY, Zhang Y, Zhang Y, Zhang Y, Zhaxisangzhu, Zhou XX (Tibet ASγ Collaboration) (2010) Observation of TeV gamma rays from the Fermi bright galactic sources with the Tibet air shower array. Astrophys J Lett 709:L6–L10. doi:10.1088/2041-8205/709/1/L6. arXiv:0912.0386

    ADS  Google Scholar 

  • Ando S, Kusenko A (2010) Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields. Astrophys J Lett 722:L39–L44. doi:10.1088/2041-8205/722/1/L39. arXiv:1005.1924

    ADS  Google Scholar 

  • Arlen TC, Vassiliev VV, Weisgarber T, Wakely SP, Yusef Shafi S (2012) Intergalactic magnetic fields and gamma ray observations of extreme TeV blazars. arXiv:1210.2802

  • Arnold P, Moore GD, Yaffe GD (2000) Transport coefficients in high temperature gauge theories. I: leading-log results. J High Energy Phys 0011:001. arXiv:hep-ph/0010177

    ADS  Google Scholar 

  • Arnold P, Moore GD, Yaffe LG (2003) Transport coefficients in high temperature gauge theories, 2. Beyond leading log. J High Energy Phys 5:051. doi:10.1088/1126-6708/2003/05/051. arXiv:hep-ph/0302165

    MathSciNet  ADS  Google Scholar 

  • Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G et al. (2009) The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys J 697:1071–1102. doi:10.1088/0004-637X/697/2/1071. arXiv:0902.1089

    ADS  Google Scholar 

  • Banerjee R (2002) Evolution of primordial magnetic fields in the early Universe. PhD thesis, Ludwig-Maximilians-Universität, München

  • Banerjee R, Jedamzik K (2004) The evolution of cosmic magnetic fields: from the very early Universe, to recombination, to the present. Phys Rev D 70:123003. doi:10.1103/PhysRevD.70.123003. arXiv:astro-ph/0410032

    ADS  Google Scholar 

  • Barrow JD, Ferreira PG, Silk J (1997) Constraints on a primordial magnetic field. Phys Rev Lett 78:3610–3613. doi:10.1103/PhysRevLett.78.3610. arXiv:astro-ph/9701063

    ADS  Google Scholar 

  • Barrow JD, Maartens R, Tsagas CG (2007) Cosmology with inhomogeneous magnetic fields. Phys Rep 449:131–171. 10.1016/j.physrep.2007.04.006. arXiv:astro-ph/0611537

    MathSciNet  ADS  Google Scholar 

  • Baym G, Bödeker D, McLerran L (1996) Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys Rev D 53:662–667. doi:10.1103/PhysRevD.53.662. arXiv:hep-ph/9507429

    ADS  Google Scholar 

  • Beck R (2011) Future observations of cosmic magnetic fields with the SKA and its precursors. arXiv:1111.5802

  • Beck R (2012) Magnetic fields in galaxies. Space Sci Rev 166:215–230

    ADS  Google Scholar 

  • Beck R, Poezd AD, Shukurov A, Sokoloff DD (1994) Dynamos in evolving galaxies. Astron Astrophys 289:94–100

    ADS  Google Scholar 

  • Beck R, Brandenburg A, Moss D, Shukurov A, Sokoloff D (1996) Galactic magnetism: recent developments and perspectives. Annu Rev Astron Astrophys 34:155–206. doi:10.1146/annurev.astro.34.1.155

    ADS  Google Scholar 

  • Bernet ML, Miniati F, Lilly SJ, Kronberg PP, Dessauges-Zavadsky M (2008) Strong magnetic fields in normal galaxies at high redshifts. Nature 454:302–304. doi:10.1038/nature07105. arXiv:0807.3347

    ADS  Google Scholar 

  • Bernstein RA, Freedman WL, Madore BF (2002) The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. II. Measurement of foreground zodiacal light. Astrophys J 571:85–106. doi:10.1086/339423. arXiv:astro-ph/0112193

    ADS  Google Scholar 

  • Berta S, Magnelli B, Lutz D, Altieri B, Aussel H, Andreani P, Bauer O, Bongiovanni A, Cava A, Cepa J, Cimatti A, Daddi E, Dominguez H, Elbaz D, Feuchtgruber H, Förster Schreiber NM, Genzel R, Gruppioni C, Katterloher R, Magdis G, Maiolino R, Nordon R, Pérez García AM, Poglitsch A, Popesso P, Pozzi F, Riguccini L, Rodighiero G, Saintonge A, Santini P, Sanchez-Portal M, Shao L, Sturm E, Tacconi LJ, Valtchanov I, Wetzstein M, Wieprecht E (2010) Dissecting the cosmic infra-red background with Herschel/PEP. Astron Astrophys 518:L30. doi:10.1051/0004-6361/201014610. arXiv:1005.1073

    ADS  Google Scholar 

  • Bertone S, Stoehr F, White SDM (2005) Semi-analytic simulations of galactic winds: volume filling factor, ejection of metals and parameter study. Mon Not R Astron Soc 359:1201–1216. doi:10.1111/j.1365-2966.2005.08772.x. arXiv:astro-ph/0402044

    ADS  Google Scholar 

  • Bertone S, Vogt C, Enßlin T (2006) Magnetic field seeding by galactic winds. Mon Not R Astron Soc 370:319–330. doi:10.1111/j.1365-2966.2006.10474.x. arXiv:astro-ph/0604462

    ADS  Google Scholar 

  • Bhat P, Subramanian K (2013) Fluctuation dynamos and their Faraday rotation signatures. Mon Not R Astron Soc 429:2469–2481. doi:10.1093/mnras/sts516. arXiv:1210.3243

    ADS  Google Scholar 

  • Biller SD, Akerlof CW, Buckley J, Cawley MF, Chantell M, Fegan DJ, Fennell S, Gaidos JA, Hillas AM, Kerrick AD, Lamb RC, Lewis DA, Meyer DI, Mohanty G, O’Flaherty KS, Punch M, Reynolds PT, Rose HJ, Rovero AC, Schubnell MS, Sembroski G, Weekes TC, Wilson C (1995) An upper limit to the infrared background from observations of TeV gamma rays. Astrophys J 445:227–230. doi:10.1086/175689

    ADS  Google Scholar 

  • Binetruy P, Bohe A, Caprini C, Dufaux JF (2012) Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources. J Cosmol Astropart Phys 1206:027. doi:10.1088/1475-7516/2012/06/027. arXiv:1201.0983

    ADS  Google Scholar 

  • Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Biskamp D, Müller WC (1999) Decay laws for three-dimensional magnetohydrodynamic turbulence. Phys Rev Lett 83:2195–2198. doi:10.1103/PhysRevLett.83.2195. arXiv:physics/9903028

    ADS  Google Scholar 

  • Blasi P, Burles S, Olinto AV (1999) Cosmological magnetic field limits in an inhomogeneous universe. Astrophys J Lett 514:L79–L82. doi:10.1086/311958. arXiv:astro-ph/9812487

    ADS  Google Scholar 

  • Blumenthal GR, Gould RJ (1970) Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev Mod Phys 42:237–271. doi:10.1103/RevModPhys.42.237

    ADS  Google Scholar 

  • Boeckel T, Schaffner-Bielich J (2012) Little inflation at the cosmological QCD phase transition. Phys Rev D 85(10):103506. doi:10.1103/PhysRevD.85.103506. arXiv:1105.0832

    ADS  Google Scholar 

  • Bonafede A, Feretti L, Murgia M, Govoni F, Giovannini G, Dallacasa D, Dolag K, Taylor GB (2010) The coma cluster magnetic field from Faraday rotation measures. Astron Astrophys 513:A30. doi:10.1051/0004-6361/200913696. arXiv:1002.0594

    ADS  Google Scholar 

  • Bonvin C, Caprini C (2010) CMB temperature anisotropy at large scales induced by a causal primordial magnetic field. J Cosmol Astropart Phys 1005:022. doi:10.1088/1475-7516/2010/05/022. arXiv:1004.1405

    ADS  Google Scholar 

  • Bonvin C, Caprini C, Durrer R (2012) Magnetic fields from inflation: the transition to the radiation era. Phys Rev D 86:023519. doi:10.1103/PhysRevD.86.023519. arXiv:1112.3901

    ADS  Google Scholar 

  • Bordoloi R, Lilly S, Knobel C, Bolzonella M, Kampczyk P et al. (2011) The radial and azimuthal profiles of Mg II absorption around 0.5<z<0.9 zCOSMOS galaxies of different colors masses and environments. Astrophys J 743:10. doi:10.1088/0004-637X/743/1/10. arXiv:1106.0616

    ADS  Google Scholar 

  • Boyarsky A, Ruchayskiy O, Shaposhnikov M (2009) The role of sterile neutrinos in cosmology and astrophysics. Annu Rev Nucl Part Sci 59:191–214. doi:10.1146/annurev.nucl.010909.083654. arXiv:0901.0011

    ADS  Google Scholar 

  • Boyarsky A, Fröhlich J, Ruchayskiy O (2012a) Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe. Phys Rev Lett 108(3):031301. doi:10.1103/PhysRevLett.108.031301. arXiv:1109.3350

    ADS  Google Scholar 

  • Boyarsky A, Ruchayskiy O, Shaposhnikov M (2012b) Long-range magnetic fields in the ground state of the standard model plasma. Phys Rev Lett 109(11):111602. doi:10.1103/PhysRevLett.109.111602. arXiv:1204.3604

    ADS  Google Scholar 

  • Brandenburg A, Subramanian K (2005) Astrophysical magnetic fields and nonlinear dynamo theory. Phys Rep 417:1–209. doi:10.1016/j.physrep.2005.06.005. arXiv:astro-ph/0405052

    MathSciNet  ADS  Google Scholar 

  • Brandenburg A, Enqvist K, Olesen P (1996) Large-scale magnetic fields from hydromagnetic turbulence in the very early Universe. Phys Rev D 54:1291–1300. doi:10.1103/PhysRevD.54.1291. arXiv:astro-ph/9602031

    ADS  Google Scholar 

  • Broderick AE, Chang P, Pfrommer C (2012) The cosmological impact of luminous TeV blazars. I. implications of plasma instabilities for the intergalactic magnetic field and extragalactic gamma-ray background. Astrophys J 752:22. doi:10.1088/0004-637X/752/1/22. arXiv:1106.5494

    ADS  Google Scholar 

  • Brown JC, Haverkorn M, Gaensler BM, Taylor AR, Bizunok NS, McClure-Griffiths NM, Dickey JM, Green AJ (2007) Rotation measures of extragalactic sources behind the southern galactic plane: new insights into the large-scale magnetic field of the inner Milky Way. Astrophys J 663:258–266. doi:10.1086/518499. arXiv:0704.0458

    ADS  Google Scholar 

  • Campanelli L (2007) Evolution of magnetic fields in freely decaying magnetohydrodynamic turbulence. Phys Rev Lett 98:251302. doi:10.1103/PhysRevLett.98.251302. arXiv:0705.2308

    ADS  Google Scholar 

  • Caprini C, Durrer R (2001) Gravitational wave production: a strong constraint on primordial magnetic fields. Phys Rev D 65:023517. doi:10.1103/PhysRevD.65.023517. arXiv:astro-ph/0106244

    ADS  Google Scholar 

  • Caprini C, Durrer R (2006) Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields. Phys Rev D 74:063521. doi:10.1103/PhysRevD.74.063521. arXiv:astro-ph/0603476

    ADS  Google Scholar 

  • Caprini C, Durrer R, Kahniashvili T (2004) The cosmic microwave background and helical magnetic fields: the tensor mode. Phys Rev D 69:063006. doi:10.1103/PhysRevD.69.063006. arXiv:astro-ph/0304556

    ADS  Google Scholar 

  • Caprini C, Durrer R, Servant G (2008) Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach. Phys Rev D 77:124015. doi:10.1103/PhysRevD.77.124015. arXiv:0711.2593

    ADS  Google Scholar 

  • Caprini C, Durrer R, Fenu E (2009a) Can the observed large scale magnetic fields be seeded by helical primordial fields? J Cosmol Astropart Phys 0911:001. doi:10.1088/1475-7516/2009/11/001. arXiv:0906.4976

    ADS  Google Scholar 

  • Caprini C, Finelli F, Paoletti D, Riotto A (2009b) The cosmic microwave background temperature bispectrum from scalar perturbations induced by primordial magnetic fields. J Cosmol Astropart Phys 0906:021. doi:10.1088/1475-7516/2009/06/021. arXiv:0903.1420

    ADS  Google Scholar 

  • Caprini C, Durrer R, Servant G (2009c) The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. J Cosmol Astropart Phys 0912:024. doi:10.1088/1475-7516/2009/12/024. arXiv:0909.0622

    ADS  Google Scholar 

  • Cen R, Ostriker JP (1999) Where are the baryons? Astrophys J 514:1–6. doi:10.1086/306949. arXiv:astro-ph/9806281

    ADS  Google Scholar 

  • Cheng B, Olinto AV (1994) Primordial magnetic fields generated in the quark-hadron transition. Phys Rev D 50:2421–2424. doi:10.1103/PhysRevD.50.2421

    ADS  Google Scholar 

  • Christensson M, Hindmarsh M (1999) Magnetic fields in the early Universe in the string approach to MHD. Phys Rev D 60:063001. doi:10.1103/PhysRevD.60.063001. arXiv:astro-ph/9904358

    ADS  Google Scholar 

  • Clarke TE, Kronberg PP, Boehringer H (2001) A new radio—X-ray probe of galaxy cluster magnetic fields. Astrophys J 547:L111–L114. arXiv:astro-ph/0011281

    ADS  Google Scholar 

  • Cordes JM, Lazio TJW (2002) NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. arXiv:astro-ph/0207156

  • Csikor F, Fodor Z, Heitger J (1998) The electroweak phase transition at m(H) approximately =80-GeV from L(t)=2 lattices. Nucl Phys B, Proc Suppl 63:569–571. doi:10.1016/S0920-5632(97)00836-0. arXiv:hep-lat/9709098

    ADS  Google Scholar 

  • Dai ZG, Zhang B, Gou LJ, Mészáros P, Waxman E (2002) GeV emission from TeV blazars and intergalactic magnetic fields. Astrophys J Lett 580:L7–L10. doi:10.1086/345494. arXiv:astro-ph/0209091

    ADS  Google Scholar 

  • Daly RA, Loeb A (1990) A possible origin of galactic magnetic fields. Astrophys J 364:451–455. doi:10.1086/169429

    ADS  Google Scholar 

  • de Angelis A, Persic M, Roncadelli M (2008) Constraints on large-scale magnetic fields from the auger results. Mod Phys Lett A 23:315–317. doi:10.1142/S0217732308026431. arXiv:0711.3346

    ADS  Google Scholar 

  • de Forcrand P, Philipsen O (2003) QCD phase diagram for small densities from simulations at imaginary mu. Nucl Phys B, Proc Suppl 119:535–537. doi:10.1016/S0920-5632(03)01607-4. arXiv:hep-lat/0209084

    ADS  MATH  Google Scholar 

  • Demozzi V, Mukhanov V, Rubinstein H (2009) Magnetic fields from inflation? J Cosmol Astropart Phys 0908:025. doi:10.1088/1475-7516/2009/08/025. arXiv:0907.1030

    ADS  Google Scholar 

  • Dermer CD, Cavadini M, Razzaque S, Finke JD, Chiang J, Lott B (2011) Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field. Astrophys J 733:L21. doi:10.1088/2041-8205/733/2/L21. arXiv:1011.6660

    ADS  Google Scholar 

  • D’Ettorre Piazzoli B (2013) Physics results with the ARGO-YBJ experiment. Adv Space Res 51:268–279. doi:10.1016/j.asr.2011.09.037

    ADS  Google Scholar 

  • DeYoung T (HAWC Collaboration) (2012) The HAWC observatory. Nucl Instrum Methods Phys Res A 692:72–76. doi:10.1016/j.nima.2012.01.026

    ADS  Google Scholar 

  • Díaz-Gil A, García-Bellido J, García Pérez M, González-Arroyo A (2008a) Magnetic field production during preheating at the electroweak scale. Phys Rev Lett 100(24):241301. doi:10.1103/PhysRevLett.100.241301 arXiv:0712.4263

    ADS  Google Scholar 

  • Díaz-Gil A, García-Bellido J, García Pérez M, González-Arroyo A (2008b) Primordial magnetic fields from preheating at the electroweak scale. J High Energy Phys 7:043. doi:10.1088/1126-6708/2008/07/043. arXiv:0805.4159

    Google Scholar 

  • Dolag K, Grasso D, Springel V, Tkachev I (2005) Constrained simulations of the magnetic field in the local Universe and the propagation of ultrahigh energy cosmic rays. J Cosmol Astropart Phys 1:009. doi:10.1088/1475-7516/2005/01/009. arXiv:astro-ph/0410419

    ADS  Google Scholar 

  • Dolag K, KachelrießM, Semikoz DV (2009) UHECR observations and lensing in the magnetic field of the Virgo cluster. J Cosmol Astropart Phys 1:033. doi:10.1088/1475-7516/2009/01/033. arXiv:0809.5055

    ADS  Google Scholar 

  • Dolag K, Kachelriess M, Ostapchenko S, Tomàs R (2011) Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys J Lett 727:L4. doi:10.1088/2041-8205/727/1/L4. arXiv:1009.1782

    ADS  Google Scholar 

  • Dole H, Lagache G, Puget JL, Caputi KI, Fernández-Conde N, Le Floc’h E, Papovich C, Pérez-González PG, Rieke GH, Blaylock M (2006) The cosmic infrared background resolved by Spitzer. Contributions of mid-infrared galaxies to the far-infrared background. Astron Astrophys 451:417–429. doi:10.1051/0004-6361:20054446. arXiv:astro-ph/0603208

    ADS  Google Scholar 

  • Domínguez A, Primack JR, Rosario DJ, Prada F, Gilmore RC, Faber SM, Koo DC, Somerville RS, Pérez-Torres MA, Pérez-González P, Huang JS, Davis M, Guhathakurta P, Barmby P, Conselice CJ, Lozano M, Newman JA, Cooper MC (2011) Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon Not R Astron Soc 410:2556–2578. doi:10.1111/j.1365-2966.2010.17631.x. arXiv:1007.1459

    ADS  Google Scholar 

  • Donati JF, Landstreet JD (2009) Magnetic fields of nondegenerate stars. Annu Rev Astron Astrophys 47:333–370. doi:10.1146/annurev-astro-082708-101833. arXiv:0904.1938

    ADS  Google Scholar 

  • Donnert J, Dolag K, Lesch H, Müller E (2009) Cluster magnetic fields from galactic outflows. Mon Not R Astron Soc 392:1008–1021. doi:10.1111/j.1365-2966.2008.14132.x. arXiv:0808.0919

    ADS  Google Scholar 

  • Drummond I, Hathrell S (1980) Renormalization of the gravitational trace anomaly in QED. Phys Rev D 21:958. doi:10.1103/PhysRevD.21.958

    MathSciNet  ADS  Google Scholar 

  • Dubus G, Contreras JL, Funk S, Gallant Y, Hassan T, Hinton J, Inoue Y, Knödlseder J, Martin P, Mirabal N, de Naurois M, Renaud M (CTA consortium ft) (2012) Surveys with the Cherenkov telescope array. arXiv:1208.5686

  • Durrer R (2007) Cosmic magnetic fields and the CMB. New Astron Rev 51:275–280. doi:10.1016/j.newar.2006.11.057. arXiv:astro-ph/0609216

    ADS  Google Scholar 

  • Durrer R (2008) The cosmic microwave background. Cambridge University Press, Cambridge

    Google Scholar 

  • Durrer R, Caprini C (2003) Primordial magnetic fields and causality. J Cosmol Astropart Phys 0311:010. doi:10.1088/1475-7516/2003/11/010. arXiv:astro-ph/0305059

    ADS  Google Scholar 

  • Durrer R, Kahniashvili T, Yates A (1998) Microwave background anisotropies from Alfven waves. Phys Rev D 58:123004. doi:10.1103/PhysRevD.58.123004. arXiv:astro-ph/9807089

    ADS  Google Scholar 

  • Durrer R, Ferreira P, Kahniashvili T (2000) Tensor microwave anisotropies from a stochastic magnetic field. Phys Rev D 61:043001. doi:10.1103/PhysRevD.61.043001. arXiv:astro-ph/9911040

    ADS  Google Scholar 

  • Durrer R, Kunz M, Melchiorri A (2002) Cosmic structure formation with topological defects. Phys Rep 364:1–81. doi:10.1016/S0370-1573(02)00014-5. arXiv:astro-ph/0110348

    MathSciNet  ADS  MATH  Google Scholar 

  • Durrer R, Hollenstein L, Jain RK (2011) Can slow roll inflation induce relevant helical magnetic fields? J Cosmol Astropart Phys 1103:037. doi:10.1088/1475-7516/2011/03/037. arXiv:1005.5322

    ADS  Google Scholar 

  • Dvornikov M, Semikoz VB (2013) Lepton asymmetry growth in the symmetric phase of an electroweak plasma with hypermagnetic fields versus its washing out by sphalerons. Phys Rev D 87(2):025023. doi:10.1103/PhysRevD.87.025023. arXiv:1212.1416

    ADS  Google Scholar 

  • Dwek E, Krennrich F (2012) The extragalactic background light and the gamma-ray opacity of the Universe. arXiv:1209.4661

  • Elbaz D, Cesarsky CJ, Chanial P, Aussel H, Franceschini A, Fadda D, Chary RR (2002) The bulk of the cosmic infrared background resolved by ISOCAM. Astron Astrophys 384:848–865. doi:10.1051/0004-6361:20020106. arXiv:astro-ph/0201328

    ADS  Google Scholar 

  • Elmfors P, Enqvist K, Kainulainen K (1998) Strongly first order electroweak phase transition induced by primordial hypermagnetic fields. Phys Lett B 440:269–274. doi:10.1016/S0370-2693(98)01117-4. arXiv:hep-ph/9806403

    ADS  Google Scholar 

  • Elyiv A, Neronov A, Semikoz DV (2009) Gamma-ray induced cascades and magnetic fields in the intergalactic medium. Phys Rev D 80(2):023010. doi:10.1103/PhysRevD.80.023010. arXiv:0903.3649

    ADS  Google Scholar 

  • Enqvist K, Olesen P (1993) On primordial magnetic fields of electroweak origin. Phys Lett B 319:178–185. doi:10.1016/0370-2693(93)90799-N. arXiv:hep-ph/9308270

    ADS  Google Scholar 

  • Enqvist K, Rez A, Semikoz V (1995) Dirac neutrinos and primordial magnetic fields. Nucl Phys B 436:49–64. doi:10.1016/0550-3213(94)00506-A. arXiv:hep-ph/9408255

    ADS  Google Scholar 

  • Enqvist K, Jokinen A, Mazumdar A (2004) Seed perturbations for primordial magnetic fields from MSSM flat directions. J Cosmol Astropart Phys 0411:001. doi:10.1088/1475-7516/2004/11/001. arXiv:hep-ph/0404269

    MathSciNet  ADS  Google Scholar 

  • Ensslin TA, Biermann PL, Kronberg PP, Wu XP (1997) Cosmic-ray protons and magnetic fields in clusters of galaxies and their cosmological consequences. Astrophys J 477:560. doi:10.1086/303722. arXiv:astro-ph/9609190

    ADS  Google Scholar 

  • Espinosa JR, Konstandin T, No JM, Servant G (2010) Energy budget of cosmological first-order phase transitions. J Cosmol Astropart Phys 1006:028. doi:10.1088/1475-7516/2010/06/028. arXiv:1004.4187

    ADS  Google Scholar 

  • Essey W, Kusenko A (2012) On weak redshift dependence of gamma-ray spectra of distant blazars. Astrophys J Lett 751:L11. doi:10.1088/2041-8205/751/1/L11. arXiv:1111.0815

    ADS  Google Scholar 

  • Essey W, Ando S, Kusenko A (2011a) Determination of intergalactic magnetic fields from gamma ray data. Astropart Phys 35:135. doi:10.1016/j.astropartphys.2011.06.010. arXiv:1012.5313

    ADS  Google Scholar 

  • Essey W, Kalashev O, Kusenko A, Beacom JF (2011b) Role of line-of-sight cosmic-ray interactions in forming the spectra of distant blazars in TeV gamma rays and high-energy neutrinos. Astrophys J 731:51. doi:10.1088/0004-637X/731/1/51. arXiv:1011.6340

    ADS  Google Scholar 

  • Farrar GR, Jansson R, Feain IJ, Gaensler BM (2012) Galactic magnetic deflections and Centaurus A as a UHECR source. arXiv:1211.7086

  • Fenu E, Pitrou C, Maartens R (2011) The seed magnetic field generated during recombination. Mon Not R Astron Soc 414:2354–2366. doi:10.1111/j.1365-2966.2011.18554.x. arXiv:1012.2958

    ADS  Google Scholar 

  • Feretti L, Giovannini G, Govoni F, Murgia M (2012) Clusters of galaxies: observational properties of the diffuse radio emission. Astron Astrophys Rev 20:54. doi:10.1007/s00159-012-0054-z. arXiv:1205.1919

    ADS  Google Scholar 

  • Finke JD, Razzaque S (2009) Constraints on the extragalactic background light from very high energy gamma-ray observations of blazars. Astrophys J 698:1761–1766. doi:10.1088/0004-637X/698/2/1761. arXiv:0904.2583

    ADS  Google Scholar 

  • Finke JD, Razzaque S, Dermer CD (2010) Modeling the extragalactic background light from stars and dust. Astrophys J 712:238–249. doi:10.1088/0004-637X/712/1/238. arXiv:0905.1115

    ADS  Google Scholar 

  • Fixsen DJ, Cheng ES, Gales JM, Mather JC, Shafer RA, Wright EL (1996) The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys J 473:576. doi:10.1086/178173. arXiv:astro-ph/9605054

    ADS  Google Scholar 

  • Fletcher A (2011) Magnetic fields in nearby galaxies. ASP Conf Ser 438:197–210. arXiv:1104.2427

    ADS  Google Scholar 

  • Forbes MM, Zhitnitsky A (2000) Primordial galactic magnetic fields from domain walls at the QCD phase transition. Phys Rev Lett 85:5268–5271. doi:10.1103/PhysRevLett.85.5268. arXiv:hep-ph/0004051

    ADS  Google Scholar 

  • Franceschini A, Rodighiero G, Vaccari M (2008) Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon–photon opacity. Astron Astrophys 487:837–852. doi:10.1051/0004-6361:200809691. arXiv:0805.1841

    ADS  Google Scholar 

  • Frayer DT, Huynh MT, Chary R, Dickinson M, Elbaz D, Fadda D, Surace JA, Teplitz HI, Yan L, Mobasher B (2006) Spitzer 70 micron source counts in GOODS-North. Astrophys J Lett 647:L9–L12. doi:10.1086/507149. arXiv:astro-ph/0606676

    ADS  Google Scholar 

  • Funk B, Magnussen N, Meyer H, Rhode W, Westerhoff S, Wiebel-Sooth B (1998) An upper limit on the infrared background density from HEGRA data on MKN 501. Astropart Phys 9:97–103. doi:10.1016/S0927-6505(98)00009-7. arXiv:astro-ph/9802308

    ADS  Google Scholar 

  • Furlanetto SR, Loeb A (2001) Intergalactic magnetic fields from quasar outflows. Astrophys J 556:619–634. doi:10.1086/321630. arXiv:astro-ph/0102076

    ADS  Google Scholar 

  • Gaensler BM (2006) The square kilometre array: a new probe of cosmic magnetism. Astron Nachr 327:387. doi:10.1002/asna.200610539. arXiv:astro-ph/0603049

    ADS  Google Scholar 

  • Gaensler BM, Madsen GJ, Chatterjee S, Mao SA (2008) The vertical structure of warm ionised gas in the Milky Way. Publ Astron Soc Aust 25:184–200. doi:10.1071/AS08004. arXiv:0808.2550

    ADS  Google Scholar 

  • German G, Ross GG, Sarkar S (2001) Low scale inflation. Nucl Phys B 608:423–450. doi:10.1016/S0550-3213(01)00258-9. arXiv:hep-ph/0103243

    ADS  Google Scholar 

  • Giacinti G, Derkx X, Semikoz DV (2010) Search for single sources of ultra high energy cosmic rays on the sky. J Cosmol Astropart Phys 3:022. doi:10.1088/1475-7516/2010/03/022. arXiv:0907.1035

    ADS  Google Scholar 

  • Giacinti G, KachelrießM, Semikoz DV, Sigl G (2011) Ultrahigh energy nuclei in the turbulent galactic magnetic field. Astropart Phys 35:192–200. doi:10.1016/j.astropartphys.2011.07.006 arXiv:1104.1141

    ADS  Google Scholar 

  • Gilmore RC, Somerville RS, Primack JR, Domínguez A (2012) Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon Not R Astron Soc 422:3189–3207. doi:10.1111/j.1365-2966.2012.20841.x. arXiv:1104.0671

    ADS  Google Scholar 

  • Giovannini M (2009) Parameter dependence of magnetized CMB observables. Phys Rev D 79(10):103007. doi:10.1103/PhysRevD.79.103007. arXiv:0903.5164

    ADS  Google Scholar 

  • Gnedin NY, Ferrara A, Zweibel EG (2000) Generation of the primordial magnetic fields during cosmological reionization. Astrophys J 539:505–516. doi:10.1086/309272. arXiv:astro-ph/0001066

    ADS  Google Scholar 

  • Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence. Astrophys J 438:763–775. doi:10.1086/175121

    ADS  Google Scholar 

  • Gorbunov DS, Tinyakov PG, Tkachev II, Troitsky SV (2008) On the interpretation of the cosmic-ray anisotropy at ultra-high energies. arXiv:0804.1088

  • Gorjian V, Wright EL, Chary RR (2000) Tentative detection of the cosmic infrared background at 2.2 and 3.5 microns using ground-based and space-based observations. Astrophys J 536:550–560. doi:10.1086/308974. arXiv:astro-ph/0103101

    ADS  Google Scholar 

  • Gould RJ, Schréder G (1966) Opacity of the Universe to high-energy photons. Phys Rev Lett 16:252–254. doi:10.1103/PhysRevLett.16.252

    ADS  Google Scholar 

  • Grasso D, Riotto A (1998) On the nature of the magnetic fields generated during the electroweak phase transition. Phys Lett B 418:258–265. doi:10.1016/S0370-2693(97)01224-0. arXiv:hep-ph/9707265

    ADS  Google Scholar 

  • Grasso D, Rubinstein HR (2001) Magnetic fields in the early Universe. Phys Rep 348:163–266. doi:10.1016/S0370-1573(00)00110-1. arXiv:astro-ph/0009061

    ADS  Google Scholar 

  • Greisen K (1966) End to the cosmic-ray spectrum? Phys Rev Lett 16:748–750. doi:10.1103/PhysRevLett.16.748

    ADS  Google Scholar 

  • Grojean C, Servant G, Wells JD (2005) First-order electroweak phase transition in the standard model with a low cutoff. Phys Rev D 71:036001. doi:10.1103/PhysRevD.71.036001. arXiv:hep-ph/0407019

    ADS  Google Scholar 

  • Han J (2009) The magnetic structure of our galaxy: a review of observations. In: Strassmeier KG, Kosovichev AG, Beckman JE (eds) IAU symposium, vol 259, pp 455–466. doi:10.1017/S1743921309031123. arXiv:0901.1165

    Google Scholar 

  • Han JL, Qiao GJ (1994) The magnetic field in the disk of our galaxy. Astron Astrophys 288:759–772

    ADS  Google Scholar 

  • Han JL, Manchester RN, Lyne AG, Qiao GJ, van Straten W (2006) Pulsar rotation measures and the large-scale structure of the galactic magnetic field. Astrophys J 642:868–881. doi:10.1086/501444. arXiv:astro-ph/0601357

    ADS  Google Scholar 

  • Harrison E (1973) Origin of magnetic fields in the early Universe. Phys Rev Lett 30:188–190. doi:10.1103/PhysRevLett.30.188

    ADS  Google Scholar 

  • Hauser MG, Dwek E (2001) The cosmic infrared background: measurements and implications. Annu Rev Astron Astrophys 39:249–307. doi:10.1146/annurev.astro.39.1.249. arXiv:astro-ph/0105539

    ADS  Google Scholar 

  • Hauser MG, Arendt RG, Kelsall T, Dwek E, Odegard N, Weiland JL, Freudenreich HT, Reach WT, Silverberg RF, Moseley SH, Pei YC, Lubin P, Mather JC, Shafer RA, Smoot GF, Weiss R, Wilkinson DT, Wright EL (1998) The COBE diffuse infrared background experiment search for the cosmic infrared background. I. Limits and detections. Astrophys J 508:25–43. doi:10.1086/306379. arXiv:astro-ph/9806167

    ADS  Google Scholar 

  • Hayashida N, Honda K, Honda M, Inoue N, Kadota K, Kakimoto F, Kamata K, Kawaguchi S, Kawasumi N, Matsubara Y, Murakami K, Nagano M, Ohoka H, Sakaki N, Souma N, Takeda M, Teshima M, Tsushima I, Uchihori Y, Yoshida S, Yoshii H (1996) Possible clustering of the most energetic cosmic rays within a limited space angle observed by the Akeno giant air shower array. Phys Rev Lett 77:1000–1003. doi:10.1103/PhysRevLett.77.1000

    ADS  Google Scholar 

  • Heckler A, Hogan CJ (1993) Neutrino heat conduction and inhomogeneities in the early Universe. Phys Rev D 47:4256–4260. doi:10.1103/PhysRevD.47.4256

    ADS  Google Scholar 

  • Hinshaw G, Weiland JL, Hill RS, Odegard N, Larson D, Bennett CL, Dunkley J, Gold B, Greason MR, Jarosik N, Komatsu E, Nolta MR, Page L, Spergel DN, Wollack E, Halpern M, Kogut A, Limon M, Meyer SS, Tucker GS, Wright EL (2009) Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys J Suppl Ser 180:225–245. doi:10.1088/0067-0049/180/2/225. arXiv:0803.0732

    ADS  Google Scholar 

  • Hinshaw G, Larson D, Komatsu E, Spergel D, Bennett C et al (2012) Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226

  • Hollenstein L, Caprini C, Crittenden R, Maartens R (2008) Challenges for creating magnetic fields by cosmic defects. Phys Rev D 77:063517. doi:10.1103/PhysRevD.77.063517. arXiv:0712.1667

    ADS  Google Scholar 

  • Huber SJ, Konstandin T (2008) Gravitational wave production by collisions: more bubbles. J Cosmol Astropart Phys 0809:022. doi:10.1088/1475-7516/2008/09/022. arXiv:0806.1828

    ADS  Google Scholar 

  • Huber SJ, Konstandin T, Prokopec T, Schmidt MG (2007) Baryogenesis in the MSSM, nMSSM and NMSSM. Nucl Phys A 785:206–209. doi:10.1016/j.nuclphysa.2006.11.154. arXiv:hep-ph/0608017

    ADS  Google Scholar 

  • Ichiki K, Takahashi K, Sugiyama N, Hanayama H, Ohno H (2007) Magnetic field spectrum at cosmological recombination. arXiv:astro-ph/0701329

  • Ichiki K, Inoue S, Takahashi K (2008) Probing the nature of the weakest intergalactic magnetic fields with the high-energy emission of gamma-ray bursts. Astrophys J 682:127–134. doi:10.1086/588275. arXiv:0711.1589

    ADS  Google Scholar 

  • Iroshnikov PS (1964) Turbulence of a conducting fluid in a strong magnetic field. Sov Astron 7:566

    MathSciNet  ADS  Google Scholar 

  • Jackson JD (1962) Classical electrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  • Jain RK, Sloth MS (2012) A magnetic consistency relation. arXiv:1207.4187

  • Jansson R, Farrar GR (2012a) A new model of the galactic magnetic field. Astrophys J 757:14. doi:10.1088/0004-637X/757/1/14. arXiv:1204.3662

    ADS  Google Scholar 

  • Jansson R, Farrar GR (2012b) The galactic magnetic field. Astrophys J Lett 761:L11. doi:10.1088/2041-8205/761/1/L11. arXiv:1210.7820

    ADS  Google Scholar 

  • Jansson R, Farrar GR, Waelkens AH, Enßlin TA (2009) Constraining models of the large scale galactic magnetic field with WMAP5 polarization data and extragalactic rotation measure sources. J Cosmol Astropart Phys 7:021. doi:10.1088/1475-7516/2009/07/021. arXiv:0905.2228

    ADS  Google Scholar 

  • Jedamzik K, Abel T (2011) Weak primordial magnetic fields and anisotropies in the cosmic microwave background radiation. arXiv:1108.2517

  • Jedamzik K, Sigl G (2011) Evolution of the large-scale tail of primordial magnetic fields. Phys Rev D 83(10):103005. doi:10.1103/PhysRevD.83.103005. arXiv:1012.4794

    ADS  Google Scholar 

  • Jedamzik K, Katalinić V, Olinto AV (1998) Damping of cosmic magnetic fields. Phys Rev D 57:3264–3284. doi:10.1103/PhysRevD.57.3264. arXiv:astro-ph/9606080

    ADS  Google Scholar 

  • Jedamzik K, Katalinić V, Olinto AV (2000) Limit on primordial small-scale magnetic fields from cosmic microwave background distortions. Phys Rev Lett 85:700–703. doi:10.1103/PhysRevLett.85.700. arXiv:astro-ph/9911100

    ADS  Google Scholar 

  • Joyce M, Shaposhnikov ME (1997) Primordial magnetic fields, right electrons, and the Abelian anomaly. Phys Rev Lett 79:1193–1196. doi:10.1103/PhysRevLett.79.1193. arXiv:astro-ph/9703005

    ADS  Google Scholar 

  • Kahniashvili T, Ratra B (2007) CMB anisotropies due to cosmological magnetosonic waves. Phys Rev D 75:023002. doi:10.1103/PhysRevD.75.023002. arXiv:astro-ph/0611247

    ADS  Google Scholar 

  • Kahniashvili T, Maravin Y, Kosowsky A (2009) Faraday rotation limits on a primordial magnetic field from Wilkinson microwave anisotropy probe five-year data. Phys Rev D 80(2):023009. doi:10.1103/PhysRevD.80.023009. arXiv:0806.1876

    ADS  Google Scholar 

  • Kahniashvili T, Tevzadze AG, Brandenburg A, Neronov A (2012) Evolution of primordial magnetic fields from phase transitions. arXiv:1212.0596

  • Kajantie K, Laine M, Rummukainen K, Shaposhnikov M (1996a) Is there a hot electroweak phase transition at m H m W ? Phys Rev Lett 77:2887–2890. doi:10.1103/PhysRevLett.77.2887. http://link.aps.org/doi/10.1103/PhysRevLett.77.2887

    ADS  Google Scholar 

  • Kajantie K, Laine M, Rummukainen K, Shaposhnikov ME (1996b) The electroweak phase transition: a nonperturbative analysis. Nucl Phys B 466:189–258. doi:10.1016/0550-3213(96)00052-1. arXiv:hep-lat/9510020

    ADS  Google Scholar 

  • Kamionkowski M, Kosowsky A, Turner MS (1994) Gravitational radiation from first order phase transitions. Phys Rev D 49:2837. arXiv:astro-ph/9310044

    ADS  Google Scholar 

  • Kandus A, Kunze KE, Tsagas CG (2011) Primordial magnetogenesis. Phys Rep 505:1–58. doi:10.1016/j.physrep.2011.03.001. arXiv:1007.3891

    ADS  Google Scholar 

  • Kaplan SA, Tsytovich VN (1973) Plasma astrophysics. Pergamon, Elmsford

    Google Scholar 

  • Kashlinsky A, Arendt RG, Ashby MLN, Fazio GG, Mather J, Moseley SH (2012) New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications. Astrophys J 753:63. doi:10.1088/0004-637X/753/1/63. arXiv:1201.5617

    ADS  Google Scholar 

  • Keenan RC, Barger AJ, Cowie LL, Wang WH (2010) The resolved near-infrared extragalactic background. Astrophys J 723:40–46. doi:10.1088/0004-637X/723/1/40. arXiv:1102.2428

    ADS  Google Scholar 

  • Kennicutt RC, Evans NJ (2012) Star formation in the Milky Way and nearby galaxies. Annu Rev Astron Astrophys 50:531–608. doi:10.1146/annurev-astro-081811-125610. arXiv:1204.3552

    ADS  Google Scholar 

  • Kim E, Olinto A, Rosner R (1996) Generation of density perturbations by primordial magnetic fields. Astrophys J 468:28. doi:10.1086/177667. arXiv:astro-ph/9412070

    ADS  Google Scholar 

  • Kisslinger LS (2003) Magnetic wall from chiral phase transition and CMBR correlations. Phys Rev D 68(4):043516. doi:10.1103/PhysRevD.68.043516. arXiv:hep-ph/0212206

    ADS  Google Scholar 

  • Kneiske TM (2008) Gamma-ray background: a review. Chin J Astron Astrophys Suppl 8:219–225. arXiv:0707.2915

    Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc Acad Sci USSR 30:299–303. doi:10.1098/rspa.1991.0075 (Russian). Translated into English by Kolmogorov AN, Nikolaevich A (1991) Proc R Soc Lond, Ser A, Math Phys Sci 434:9–13

    Google Scholar 

  • Komatsu E et al. (2011) Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys J Suppl Ser 192:18. doi:10.1088/0067-0049/192/2/18. arXiv:1001.4538

    ADS  Google Scholar 

  • Kosowsky A, Loeb A (1996) Faraday rotation of microwave background polarization by a primordial magnetic field. Astrophys J 469:1. doi:10.1086/177751. arXiv:astro-ph/9601055

    ADS  Google Scholar 

  • Kraichnan RH (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys Fluids 8:1385–1387

    MathSciNet  ADS  Google Scholar 

  • Kronberg PP (1994) Extragalactic magnetic fields. Rep Prog Phys 57:325–382

    ADS  Google Scholar 

  • Kronberg PP, Perry JJ (1982) Absorption lines, Faraday rotation, and magnetic field estimates for QSO absorption-line clouds. Astrophys J 263:518–532. doi:10.1086/160523

    ADS  Google Scholar 

  • Kronberg PP, Simard-Normandin M (1976) New evidence on the origin of rotation measures in extragalactic radio sources. Nature 263:653–656. doi:10.1038/263653a0

    ADS  Google Scholar 

  • Kronberg PP, Perry JJ, Zukowski ELH (1992) Discovery of extended Faraday rotation compatible with spiral structure in an intervening galaxy at Z=0.395—new observations of PKS 1229-021. Astrophys J 387:528–535. doi:10.1086/171104

    ADS  Google Scholar 

  • Kronberg PP, Lesch H, Hopp U (1999) Magnetization of the intergalactic medium by primeval galaxies. Astrophys J 511:56–64. doi:10.1086/306662

    ADS  Google Scholar 

  • Kronberg PP, Dufton QW, Li H, Colgate SA (2001) Magnetic energy of the intergalactic medium from galactic black holes. Astrophys J 560:178–186. doi:10.1086/322767. arXiv:astro-ph/0106281

    ADS  Google Scholar 

  • Kronberg P, Bernet M, Miniati F, Lilly S, Short M et al. (2008) A global probe of cosmic magnetic fields to high redshifts. Astrophys J 676:7079. arXiv:0712.0435

    Google Scholar 

  • Kulsrud RM (1983) Basic plasma physics I. Handbook of plasma physics, vol 1. North-Holland, Amsterdam

    Google Scholar 

  • Kulsrud RM (1999) A critical review of galactic dynamos. Annu Rev Astron Astrophys 37:37–64. doi:10.1146/annurev.astro.37.1.37

    ADS  Google Scholar 

  • Kulsrud RM, Zweibel EG (2008) On the origin of cosmic magnetic fields. Rep Prog Phys 71(4):046901. doi:10.1088/0034-4885/71/4/046901. arXiv:0707.2783

    ADS  Google Scholar 

  • Kulsrud RM, Cen R, Ostriker JP, Ryu D (1997) The protogalactic origin for cosmic magnetic fields. Astrophys J 480:481. doi:10.1086/303987. arXiv:astro-ph/9607141

    ADS  Google Scholar 

  • Kunze KE (2010) Large scale magnetic fields from gravitationally coupled electrodynamics. Phys Rev D 81:043526. doi:10.1103/PhysRevD.81.043526. arXiv:0911.1101

    ADS  Google Scholar 

  • Landau L, Lifschitz E (1990) Hydrodynamik, Lehrbuch der theoretischen physik, 5th edn, vol 6. Akademie Verlag, Berlin

    Google Scholar 

  • Lee S, Olinto AV, Sigl G (1995) Extragalactic magnetic field and the highest energy cosmic rays. Astrophys J Lett 455:L21. doi:10.1086/309812. arXiv:astro-ph/9508088

    ADS  Google Scholar 

  • Lemoine M, Sigl G, Olinto AV, Schramm DN (1997) Ultra–high-energy cosmic-ray sources and large-scale magnetic fields. Astrophys J Lett 486:L115. doi:10.1086/310847. arXiv:astro-ph/9704203

    ADS  Google Scholar 

  • Lewis A (2004) CMB anisotropies from primordial inhomogeneous magnetic fields. Phys Rev D 70:043011. doi:10.1103/PhysRevD.70.043011. arXiv:astro-ph/0406096

    ADS  Google Scholar 

  • Lewis A, Bridle S (2002) Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys Rev D 66:103511. arXiv:astro-ph/0205436

    ADS  Google Scholar 

  • Lifschitz E, Pitajevski L (1983) Physikalische Kinetik, Lehrbuch der theoretischen Physik. vol 10. Akademie Verlag, Berlin

    Google Scholar 

  • Madau P, Pozzetti L (2000) Deep galaxy counts, extragalactic background light and the stellar baryon budget. Mon Not R Astron Soc 312:L9–L15. doi:10.1046/j.1365-8711.2000.03268.x. arXiv:astro-ph/9907315

    ADS  Google Scholar 

  • Maeda S, Kitagawa S, Kobayashi T, Shiromizu T (2009) Primordial magnetic fields from second-order cosmological perturbations: tight coupling approximation. Class Quantum Gravity 26:135014. doi:10.1088/0264-9381/26/13/135014. arXiv:0805.0169

    MathSciNet  ADS  Google Scholar 

  • Maeda S, Takahashi K, Ichiki K (2011) Primordial magnetic fields generated by the non-adiabatic fluctuations at pre-recombination era. J Cosmol Astropart Phys 1111:045. doi:10.1088/1475-7516/2011/11/045. arXiv:1109.0691

    ADS  Google Scholar 

  • Martin J, Yokoyama J (2008) Generation of large-scale magnetic fields in single-field inflation. J Cosmol Astropart Phys 0801:025. doi:10.1088/1475-7516/2008/01/025. arXiv:0711.4307

    ADS  Google Scholar 

  • Matsumoto T, Matsuura S, Murakami H, Tanaka M, Freund M, Lim M, Cohen M, Kawada M, Noda M (2005) Infrared telescope in space observations of the near-infrared extragalactic background light. Astrophys J 626:31–43. doi:10.1086/429383. arXiv:astro-ph/0411593

    ADS  Google Scholar 

  • Mazin D, Raue M (2007) New limits on the density of the extragalactic background light in the optical to the far infrared from the spectra of all known TeV blazars. Astron Astrophys 471:439–452. doi:10.1051/0004-6361:20077158. arXiv:astro-ph/0701694

    ADS  Google Scholar 

  • Medvedev MV, Silva LO, Kamionkowski M (2006) Cluster magnetic fields from large-scale structure and galaxy cluster shocks. Astrophys J Lett 642:L1–L4. doi:10.1086/504470. arXiv:astro-ph/0512079

    ADS  Google Scholar 

  • Miniati F, Bell AR (2011) Resistive magnetic field generation at cosmic dawn. Astrophys J 729:73. doi:10.1088/0004-637X/729/1/73. arXiv:1001.2011

    ADS  Google Scholar 

  • Miniati F, Elyiv A (2012) Relaxation of blazar induced pair beams in cosmic voids: measurement of magnetic field in voids and thermal history of the IGM. arXiv:1208.1761

  • Motta L, Caldwell RR (2012) Non-Gaussian features of primordial magnetic fields in power-law inflation. Phys Rev D 85:103532. doi:10.1103/PhysRevD.85.103532. arXiv:1203.1033

    ADS  Google Scholar 

  • Mueller A, Shoshi A, Wong S (2007) On Kolmogorov wave turbulence in QCD. Nucl Phys B 760:145–165. doi:10.1016/j.nuclphysb.2006.10.023. arXiv:hep-ph/0607136

    ADS  MATH  Google Scholar 

  • Muller WC, Grappin R (2005) Spectral energy dynamics in magnetohydrodynamic turbulence. Phys Rev Lett 95:114502. doi:10.1103/PhysRevLett.95.114502

    ADS  Google Scholar 

  • Neronov A, Aharonian FA (2007) Production of TeV gamma radiation in the vicinity of the supermassive black hole in the Giant Radio Galaxy M87. Astrophys J 671:85–96. doi:10.1086/522199. arXiv:0704.3282

    ADS  Google Scholar 

  • Neronov A, Semikoz DV (2007) A method of measurement of extragalactic magnetic fields by TeV gamma ray telescopes. J Exp Theor Phys Lett 85:579. arXiv:astro-ph/0604607

    Google Scholar 

  • Neronov A, Semikoz DV (2009) Sensitivity of γ-ray telescopes for detection of magnetic fields in the intergalactic medium. Phys Rev D 80(12):123012. doi:10.1103/PhysRevD.80.123012. arXiv:0910.1920

    ADS  Google Scholar 

  • Neronov A, Vovk I (2010) Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328:73–75. doi:10.1126/science.1184192

    ADS  Google Scholar 

  • Neronov A, Semikoz D, Kachelriess M, Ostapchenko S, Elyiv A (2010) Degree-scale GeV “Jets” from active and dead TeV blazars. Astrophys J Lett 719:L130–L133. doi:10.1088/2041-8205/719/2/L130. arXiv:1002.4981

    ADS  Google Scholar 

  • Neronov A, Semikoz DV, Tinyakov PG, Tkachev II (2011) No evidence for gamma-ray halos around active galactic nuclei resulting from intergalactic magnetic fields. Astron Astrophys 526:A90. doi:10.1051/0004-6361/201015892. arXiv:1006.0164

    ADS  Google Scholar 

  • Neronov A, Semikoz D, Taylor AM (2012) Very hard gamma-ray emission from a flare of Mrk 501. Astron Astrophys 541:A31. doi:10.1051/0004-6361/201117083. arXiv:1104.2801

    ADS  Google Scholar 

  • Oliver SJ, Wang L, Smith AJ, Altieri B, Amblard A, Arumugam V, Auld R, Aussel H, Babbedge T, Blain A, Bock J, Boselli A, Buat V, Burgarella D, Castro-Rodríguez N, Cava A, Chanial P, Clements DL, Conley A, Conversi L, Cooray A, Dowell CD, Dwek E, Eales S, Elbaz D, Fox M, Franceschini A, Gear W, Glenn J, Griffin M, Halpern M, Hatziminaoglou E, Ibar E, Isaak K, Ivison RJ, Lagache G, Levenson L, Lu N, Madden S, Maffei B, Mainetti G, Marchetti L, Mitchell-Wynne K, Mortier AMJ, Nguyen HT, O’Halloran B, Omont A, Page MJ, Panuzzo P, Papageorgiou A, Pearson CP, Pérez-Fournon I, Pohlen M, Rawlings JI, Raymond G, Rigopoulou D, Rizzo D, Roseboom IG, Rowan-Robinson M, Sánchez Portal M, Savage R, Schulz B, Scott D, Seymour N, Shupe DL, Stevens JA, Symeonidis M, Trichas M, Tugwell KE, Vaccari M, Valiante E, Valtchanov I, Vieira JD, Vigroux L, Ward R, Wright G, Xu CK, Zemcov M (2010) HerMES: SPIRE galaxy number counts at 250, 350, and 500 μm. Astron Astrophys 518:L21. doi:10.1051/0004-6361/201014697. arXiv:1005.2184

    ADS  Google Scholar 

  • Oppermann N, Junklewitz H, Robbers G, Bell MR, Enßlin TA, Bonafede A, Braun R, Brown JC, Clarke TE, Feain IJ, Gaensler BM, Hammond A, Harvey-Smith L, Heald G, Johnston-Hollitt M, Klein U, Kronberg PP, Mao SA, McClure-Griffiths NM, O’Sullivan SP, Pratley L, Robishaw T, Roy S, Schnitzeler DHFM, Sotomayor-Beltran C, Stevens J, Stil JM, Sunstrum C, Tanna A, Taylor AR, Van Eck CL (2012) An improved map of the galactic Faraday sky. Astron Astrophys 542:A93. doi:10.1051/0004-6361/201118526. arXiv:1111.6186

    ADS  Google Scholar 

  • Oren AL, Wolfe AM (1995) A Faraday rotation search for magnetic fields in quasar damped LY alpha absorption systems. Astrophys J 445:624–641. doi:10.1086/175726

    ADS  Google Scholar 

  • Pandey KL, Sethi SK (2012) Theoretical estimates of 2-point shear correlation functions using tangled magnetic field power spectrum. arXiv:1201.3619

  • Paoletti D, Finelli F (2011) CMB constraints on a stochastic background of primordial magnetic fields. Phys Rev D 83(12):123533. doi:10.1103/PhysRevD.83.123533. arXiv:1005.0148

    ADS  Google Scholar 

  • Paoletti D, Finelli F (2012) Constraints on a stochastic background of primordial magnetic fields with WMAP and south pole telescope data. arXiv:1208.2625

  • Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293. doi:10.1086/146087

    MathSciNet  ADS  Google Scholar 

  • Plaga R (1995) Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature 374:430–432. doi:10.1038/374430a0

    ADS  Google Scholar 

  • Pshirkov MS, Tinyakov PG, Kronberg PP, Newton-McGee KJ (2011) Deriving the global structure of the galactic magnetic field from Faraday rotation measures of extragalactic sources. Astrophys J 738:192. doi:10.1088/0004-637X/738/2/192. arXiv:1103.0814

    ADS  Google Scholar 

  • Puget JL, Abergel A, Bernard JP, Boulanger F, Burton WB, Desert FX, Hartmann D (1996) Tentative detection of a cosmic far-infrared background with COBE. Astron Astrophys 308:L5

    ADS  Google Scholar 

  • Ratra B (1992) Cosmological ‘seed’ magnetic field from inflation. Astrophys J 391:L1–L4

    ADS  Google Scholar 

  • Rees MJ (1987) The origin and cosmogonic implications of seed magnetic fields. Q J R Astron Soc 28:197–206

    ADS  Google Scholar 

  • Rees MJ, Reinhardt M (1972) Some remarks on intergalactic magnetic fields. Astron Astrophys 19:189

    ADS  Google Scholar 

  • Roberge A, Weiss N (1986) Gauge theories with imaginary chemical potential and the phases of QCD. Nucl Phys B 275:734. doi:10.1016/0550-3213(86)90582-1

    ADS  Google Scholar 

  • Ruzmaikin AA, Shukurov AM, Sokoloff DD (1988) Magnetic fields of galaxies. Kluwer Academic, Dordrecht

    Google Scholar 

  • Ryu D, Kang H, Cho J, Das S (2008) Turbulence and magnetic fields in the large-scale structure of the Universe. Science 320:909. doi:10.1126/science.1154923. arXiv:0805.2466

    ADS  Google Scholar 

  • Saga S, Shiraishi M, Ichiki K, Sugiyama N (2013) Generation of magnetic fields in Einstein–Aether gravity. arXiv:1302.4189

  • Saveliev A, Jedamzik K, Sigl G (2012) Time evolution of the large-scale tail of nonhelical primordial magnetic fields with back-reaction of the turbulent medium. Phys Rev D 86(10):103010. doi:10.1103/PhysRevD.86.103010. arXiv:1208.0444

    ADS  Google Scholar 

  • Schleicher DRG, Miniati F (2011) Primordial magnetic field constraints from the end of reionization. Mon Not R Astron Soc 418:L143–L147. doi:10.1111/j.1745-3933.2011.01162.x. arXiv:1108.1874

    ADS  Google Scholar 

  • Schleicher DR, Banerjee R, Klessen RS (2009) Dark stars: implications and constraints from cosmic reionization and extragalactic background radiation. Phys Rev D 79:043510. doi:10.1103/PhysRevD.79.043510. arXiv:0809.1519

    ADS  Google Scholar 

  • Schleicher DRG, Banerjee R, Sur S, Arshakian TG, Klessen RS, Beck R, Spaans M (2010) Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit. Astron Astrophys 522:A115. doi:10.1051/0004-6361/201015184. arXiv:1003.1135

    ADS  Google Scholar 

  • Schlickeiser R, Shukla PK (2003) Cosmological magnetic field generation by the Weibel instability. Astrophys J Lett 599:L57–L60. doi:10.1086/381246

    ADS  Google Scholar 

  • Schlickeiser R, Ibscher D, Supsar M (2012) Plasma effects on fast pair beams in cosmic voids. Astrophys J 758:102. doi:10.1088/0004-637X/758/2/102

    ADS  Google Scholar 

  • Schwarz DJ, Stuke M (2009) Lepton asymmetry and the cosmic QCD transition. J Cosmol Astropart Phys 0911:025. doi:10.1088/1475-7516/2009/11/025, 10.1088/1475-7516/2010/10/E01. arXiv:0906.3434

    ADS  Google Scholar 

  • Semikoz VB, Valle JWF (2008) Lepton asymmetries and the growth of cosmological seed magnetic fields. J High Energy Phys 3:067. doi:10.1088/1126-6708/2008/03/067. arXiv:0704.3978

    ADS  Google Scholar 

  • Semikoz V, Sokoloff D, Valle J (2009) Is the baryon asymmetry of the Universe related to galactic magnetic fields? Phys Rev D 80:083510. doi:10.1103/PhysRevD.80.083510. arXiv:0905.3365

    ADS  Google Scholar 

  • Semikoz V, Sokoloff D, Valle J (2012) Lepton asymmetries and primordial hypermagnetic helicity evolution. J Cosmol Astropart Phys 1206:008. doi:10.1088/1475-7516/2012/06/008. arXiv:1205.3607

    ADS  Google Scholar 

  • Seshadri T, Subramanian K (2001) CMBR polarization signals from tangled magnetic fields. Phys Rev Lett 87:101301. doi:10.1103/PhysRevLett.87.101301. arXiv:astro-ph/0012056

    ADS  Google Scholar 

  • Seshadri T, Subramanian K (2009) CMB bispectrum from primordial magnetic fields on large angular scales. Phys Rev Lett 103:081303. doi:10.1103/PhysRevLett.103.081303. arXiv:0902.4066

    ADS  Google Scholar 

  • Sethi SK, Subramanian K (2005) Primordial magnetic fields in the post-recombination era and early reionization. Mon Not R Astron Soc 356:778–788. doi:10.1111/j.1365-2966.2004.08520.x. arXiv:astro-ph/0405413

    ADS  Google Scholar 

  • Sethi SK, Subramanian K (2009) Primordial magnetic fields and the HI signal from the epoch of reionization. J Cosmol Astropart Phys 0911:021. doi:10.1088/1475-7516/2009/11/021. arXiv:0911.0244

    ADS  Google Scholar 

  • Shaposhnikov M (1987) Baryon asymmetry of the Universe in standard electroweak theory. Nucl Phys B 287:757–775. doi:10.1016/0550-3213(87)90127-1

    ADS  Google Scholar 

  • Shaw JR, Lewis A (2010) Massive neutrinos and magnetic fields in the early Universe. Phys Rev D 81:043517. doi:10.1103/PhysRevD.81.043517. arXiv:0911.2714

    ADS  Google Scholar 

  • Shaw JR, Lewis A (2012) Constraining primordial magnetism. Phys Rev D 86(4):043510. doi:10.1103/PhysRevD.86.043510. arXiv:1006.4242

    ADS  Google Scholar 

  • Sigl G, Lemoine M (1998) Reconstruction of source and cosmic magnetic field characteristics from clusters of ultra-high energy cosmic rays. Astropart Phys 9:65–78. doi:10.1016/S0927-6505(98)00006-1. arXiv:astro-ph/9711060

    ADS  Google Scholar 

  • Sigl G, Olinto AV, Jedamzik K (1997) Primordial magnetic fields from cosmological first order phase transitions. Phys Rev D 55:4582–4590. doi:10.1103/PhysRevD.55.4582. arXiv:astro-ph/9610201

    ADS  Google Scholar 

  • Sigl G, Miniati F, Enßlin TA (2004) Ultrahigh energy cosmic ray probes of large scale structure and magnetic fields. Phys Rev D 70(4):043007. doi:10.1103/PhysRevD.70.043007. arXiv:astro-ph/0401084

    ADS  Google Scholar 

  • Smits R, Kramer M, Stappers B, Lorimer DR, Cordes J, Faulkner A (2009) Pulsar searches and timing with the square kilometre array. Astron Astrophys 493:1161–1170. doi:10.1051/0004-6361:200810383. arXiv:0811.0211

    ADS  Google Scholar 

  • Spitzer L (1978) Physical processes in the interstellar medium. Wiley, New York

    Google Scholar 

  • Stanev T (1997) Ultra–high-energy cosmic rays and the large-scale structure of the galactic magnetic field. Astrophys J 479:290. doi:10.1086/303866. arXiv:astro-ph/9607086

    ADS  Google Scholar 

  • Stecker FW, Malkan MA, Scully ST (2006) Intergalactic photon spectra from the far-IR to the UV Lyman limit for 0≤z≤6 and the optical depth of the Universe to high-energy gamma rays. Astrophys J 648:774–783. doi:10.1086/506188. arXiv:astro-ph/0510449

    ADS  Google Scholar 

  • Steigman G (2008) Neutrinos and BBN (and the CMB), pp 241–256. arXiv:0807.3004

  • Stil JM, Taylor AR, Sunstrum C (2011) Structure in the rotation measure sky. Astrophys J 726:4. doi:10.1088/0004-637X/726/1/4. arXiv:1010.5299

    ADS  Google Scholar 

  • Subramanian K (2010) Magnetic fields in the early Universe. Astron Nachr 331:110–120. doi:10.1002/asna.200911312. arXiv:0911.4771

    ADS  MATH  Google Scholar 

  • Subramanian K, Barrow JD (1998a) Magnetohydrodynamics in the early Universe and the damping of nonlinear Alfvén waves. Phys Rev D 58(8):083502. doi:10.1103/PhysRevD.58.083502. arXiv:astro-ph/9712083

    ADS  Google Scholar 

  • Subramanian K, Barrow JD (1998b) Microwave background signals from tangled magnetic fields. Phys Rev Lett 81:3575–3578. doi:10.1103/PhysRevLett.81.3575. arXiv:astro-ph/9803261

    ADS  Google Scholar 

  • Subramanian K, Narasimha D, Chitre SM (1994) Thermal generation of cosmological seed magnetic fields in ionization fronts. Mon Not R Astron Soc 271:L15

    ADS  Google Scholar 

  • Sun XH, Reich W, Waelkens A, Enßlin TA (2008) Radio observational constraints on galactic 3D-emission models. Astron Astrophys 477:573–592. doi:10.1051/0004-6361:20078671. arXiv:0711.1572

    ADS  Google Scholar 

  • Sur S, Schleicher DRG, Banerjee R, Federrath C, Klessen RS (2010) The generation of strong magnetic fields during the formation of the first stars. Astrophys J Lett 721:L134–L138. doi:10.1088/2041-8205/721/2/L134. arXiv:1008.3481

    ADS  Google Scholar 

  • Takahashi K, Murase K, Ichiki K, Inoue S, Nagataki S (2008) Detectability of pair echoes from gamma-ray bursts and intergalactic magnetic fields. Astrophys J Lett 687:L5–L8. doi:10.1086/593118. arXiv:0806.2825

    ADS  Google Scholar 

  • Takahashi K, Mori M, Ichiki K, Inoue S (2012) Lower bounds on intergalactic magnetic fields from simultaneously observed GeV–TeV light curves of the blazar Mrk 501. Astrophys J Lett 744:L7. doi:10.1088/2041-8205/744/1/L7. arXiv:1103.3835

    ADS  Google Scholar 

  • Tashiro H, Sugiyama N (2006) The early reionization with the primordial magnetic fields. Mon Not R Astron Soc 368:965–970. doi:10.1111/j.1365-2966.2006.10178.x. arXiv:astro-ph/0512626

    ADS  Google Scholar 

  • Tashiro H, Sugiyama N (2011) Sunyaev–Zel’dovich power spectrum produced by primordial magnetic fields. Mon Not R Astron Soc 411:1284–1292. doi:10.1111/j.1365-2966.2010.17767.x. arXiv:0908.0113

    ADS  Google Scholar 

  • Tavani M, Barbiellini G, Argan A, Boffelli F, Bulgarelli A, Caraveo P, Cattaneo PW, Chen AW, Cocco V, Costa E, D’Ammando F, Del Monte E, de Paris G, Di Cocco G, di Persio G, Donnarumma I, Evangelista Y, Feroci M, Ferrari A, Fiorini M, Fornari F, Fuschino F, Froysland T, Frutti M, Galli M, Gianotti F, Giuliani A, Labanti C, Lapshov I, Lazzarotto F, Liello F, Lipari P, Longo F, Mattaini E, Marisaldi M, Mastropietro M, Mauri A, Mauri F, Mereghetti S, Morelli E, Morselli A, Pacciani L, Pellizzoni A, Perotti F, Piano G, Picozza P, Pontoni C, Porrovecchio G, Prest M, Pucella G, Rapisarda M, Rappoldi A, Rossi E, Rubini A, Soffitta P, Traci A, Trifoglio M, Trois A, Vallazza E, Vercellone S, Vittorini V, Zambra A, Zanello D, Pittori C, Preger B, Santolamazza P, Verrecchia F, Giommi P, Colafrancesco S, Antonelli A, Cutini S, Gasparrini D, Stellato S, Fanari G, Primavera R, Tamburelli F, Viola F, Guarrera G, Salotti L, D’Amico F, Marchetti E, Crisconio M, Sabatini P, Annoni G, Alia S, Longoni A, Sanquerin R, Battilana M, Concari P, Dessimone E, Grossi R, Parise A, Monzani F, Artina E, Pavesi R, Marseguerra G, Nicolini L, Scandelli L, Soli L, Vettorello V, Zardetto E, Bonati A, Maltecca L, D’Alba E, Patané M, Babini G, Onorati F, Acquaroli L, Angelucci M, Morelli B, Agostara C, Cerone M, Michetti A, Tempesta P, D’Eramo S, Rocca F, Giannini F, Borghi G, Garavelli B, Conte M, Balasini M, Ferrario I, Vanotti M, Collavo E, Giacomazzo M (2009) The AGILE mission. Astron Astrophys 502:995–1013. doi:10.1051/0004-6361/200810527. arXiv:0807.4254

    ADS  Google Scholar 

  • Tavecchio F, Ghisellini G, Foschini L, Bonnoli G, Ghirlanda G, Coppi P (2010) The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon Not R Astron Soc Lett 406:L70–L74. http://www.citebase.org/abstract?id=oai:arXiv.org:1004.1329. arXiv:1004.1329

    ADS  Google Scholar 

  • Tavecchio F, Ghisellini G, Bonnoli G, Foschini L (2011) Extreme TeV blazars and the intergalactic magnetic field. Mon Not R Astron Soc 414:3566–3576. doi:10.1111/j.1365-2966.2011.18657.x. arXiv:1009.1048

    ADS  Google Scholar 

  • Taylor AR, Stil JM, Sunstrum C (2009) A rotation measure image of the sky. Astrophys J 702:1230–1236. doi:10.1088/0004-637X/702/2/1230

    ADS  Google Scholar 

  • Taylor A, Vovk I, Neronov A (2011) Extragalactic magnetic fields constraints from simultaneous GeV–TeV observations of blazars. Astron Astrophys 529:A144. arXiv:1101.0932

    ADS  Google Scholar 

  • Tevzadze AG, Kisslinger L, Brandenburg A, Kahniashvili T (2012) Magnetic fields from QCD phase transitions. arXiv:1207.0751

  • Theuns T, Viel M, Kay S, Schaye J, Carswell RF, Tzanavaris P (2002) Galactic winds in the intergalactic medium. Astrophys J Lett 578:L5–L8. doi:10.1086/344521. arXiv:astro-ph/0208418

    ADS  Google Scholar 

  • Trivedi P, Subramanian K, Seshadri TR (2010) Primordial magnetic field limits from cosmic microwave background bispectrum of magnetic passive scalar modes. Phys Rev D 82:123006. doi:10.1103/PhysRevD.82.123006. arXiv:1009.2724

    ADS  Google Scholar 

  • Trivedi P, Seshadri T, Subramanian K (2012) Cosmic microwave background trispectrum and primordial magnetic field limits. Phys Rev Lett 108:231301. arXiv:1111.0744

    ADS  Google Scholar 

  • Tsytovich V (1977) Theory of turbulent plasmas. Studies in soviet science. Plenum, New York

    Google Scholar 

  • Turner MS, Widrow LM (1988) Inflation produced, large scale magnetic fields. Phys Rev D 37:2743. doi:10.1103/PhysRevD.37.2743

    ADS  Google Scholar 

  • Turok N, Zadrozny J (1990) Dynamical generation of baryons at the electroweak transition. Phys Rev Lett 65:2331. doi:10.1103/PhysRevLett.65.2331

    ADS  Google Scholar 

  • Urry CM, Padovani P (1995) Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pac 107:803. doi:10.1086/133630. arXiv:astro-ph/9506063

    ADS  Google Scholar 

  • Vachaspati T (1991) Magnetic fields from cosmological phase transitions. Phys Lett B 265:258–261. doi:10.1016/0370-2693(91)90051-Q

    ADS  Google Scholar 

  • Vachaspati T (2001) Estimate of the primordial magnetic field helicity. Phys Rev Lett 87:251302. doi:10.1103/PhysRevLett.87.251302. arXiv:astro-ph/0101261

    ADS  Google Scholar 

  • Venters TM, Pavlidou V (2012) Probing the intergalactic magnetic field with the anisotropy of the extragalactic gamma-ray background. arXiv:1201.4405

  • Vovk I, Taylor AM, Semikoz D, Neronov A (2012) Fermi/LAT observations of 1ES 0229+200: implications for extragalactic magnetic fields and background light. Astrophys J Lett 747:L14. doi:10.1088/2041-8205/747/1/L14. arXiv:1112.2534

    ADS  Google Scholar 

  • Weinberg S (1971) Entropy generation and the survival of protogalaxies in an expanding Universe. Astrophys J 168:175. doi:10.1086/151073

    ADS  Google Scholar 

  • Widrow LM (2002) Origin of galactic and extragalactic magnetic fields. Rev Mod Phys 74:775–823. doi:10.1103/RevModPhys.74.775. arXiv:astro-ph/0207240

    ADS  Google Scholar 

  • Widrow LM, Ryu D, Schleicher DRG, Subramanian K, Tsagas CG, Treumann RA (2012) The first magnetic fields. Space Sci Rev 166:37–70. doi:10.1007/s11214-011-9833-5. arXiv:1109.4052

    ADS  Google Scholar 

  • Wielebinski R (2005) Magnetic fields in the Milky Way, derived from radio continuum observations and Faraday rotation studies. In: Wielebinski R, Beck R (eds) Cosmic magnetic fields. Lecture notes in physics, vol 664. Springer, Berlin, p 89. doi:10.1007/11369875_5

    Google Scholar 

  • Wright EL, Reese ED (2000) Detection of the cosmic infrared background at 2.2 and 3.5 microns using DIRBE observations. Astrophys J 545:43–55. doi:10.1086/317776. arXiv:astro-ph/9912523

    ADS  Google Scholar 

  • Xu Y, Kronberg PP, Habib S, Dufton QW (2006) A Faraday rotation search for magnetic fields in large scale structure. Astrophys J 637:19–26. doi:10.1086/498336. arXiv:astro-ph/0509826

    ADS  Google Scholar 

  • Yamazaki DG, Kajino T, Mathews GJ, Ichiki K (2012) The search for a primordial magnetic field. Phys Rep 517:141–167. doi:10.1016/j.physrep.2012.02.005. arXiv:1204.3669

    ADS  Google Scholar 

  • Zatsepin GT, Kuz’min VA (1966) Upper limit of the spectrum of cosmic rays. Sov J Exp Theor Phys Lett 4:78

    Google Scholar 

Download references

Acknowledgements

We thank Chiara Caprini, Alexey Boyarski, Karsten Jedamzik, Oleg Ruchayskiy, Misha Shaposhnikov and Kandu Subramanian for discussions and useful suggestions. This work is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Neronov.

Appendices

Appendix A: Viscosities and Reynolds numbers

In this work the Reynolds number of a given scale which is inversely propositional to the viscosity plays an important role since it defines the time when the velocity field and with it the magnetic field on the given scale is damped into heat. We closely follow the treatment of Caprini et al. (2009c).

1.1 A.1 Kinematic viscosity

The kinematic viscosity is given by

$$ \nu=\frac{\eta}{\rho+p}, $$
(154)

where η is the shear viscosity. The kinematic viscosity characterizes the diffusion of transverse momentum due to collisions, and is given roughly by the mean free path \(\ell_{\rm mfp}\) of the particles. In this appendix \(\ell_{\rm mfp}\) is the physical mean free path, while \(\lambda_{\rm mfp}\) appearing in the main text is the comoving mean free path. The relation is simply \(\ell_{\rm mfp} =a\lambda_{\rm mfp}\).

A more precise expression for the shear viscosity is, see Weinberg (1971),

$$ \eta=\frac{4}{15} \frac{\pi^2}{30} g_* T^4 \ \ell_{\rm mfp} \quad \mbox {so~that}\quad\nu=\frac{\ell_{\rm mfp}}{5} . $$
(155)

The largest viscosity comes from the weakest interactions. However, non-interacting particles do not contribute to the viscosity. For this reason simple analytical approximations to the viscosity have unphysical jumps whenever a species decouples from the plasma.

Estimates from kinetic theory show that the shear viscosity of highly relativistic particles, Tm, behaves as (to leading-log accuracy):

$$ {\eta}= C \frac{T^3}{g^4 \log g^{-1}}, $$
(156)

where g is the appropriate coupling constant (depending on the temperature and the length scale at which one wants to compute the Reynolds number) and C is a numerical coefficient that can only be obtained from a detailed analysis.

At temperatures larger than the electroweak phase transition, neutrino interactions are not suppressed. The shear viscosity is dominated by right-handed lepton transport and is given by Arnold et al. (2000)

$$ {\eta} \approx \biggl(\frac{5}{2} \biggr)^3 \zeta(5)^2 \biggl(\frac {12}{\pi } \biggr)^5 \frac{3/2}{9\pi^2+224 (5+1/2)} \frac{T^3}{g'^4\log g'^{-1}}, $$
(157)

where g′ is the hypercharge coupling. This leads to

$$ \nu( T\gtrsim100 \mbox{ GeV}) \approx\frac{21.6}{T} . $$
(158)

After electroweak symmetry breaking, neutrino interactions are suppressed by a factor (T/M W )4. In this regime, neutrinos have the longest mean free path and dominate the viscosity. We use Heckler and Hogan (1993)

$$ \ell_{\rm mfp}\approx\bigl(3 G_F^2 T^5\bigr)^{-1} , $$
(159)

leading to

$$ \nu( T\lesssim100 \mbox{ GeV}) \approx4.9 \times10^8 \ \frac {\mbox {GeV}^4}{T^5} . $$
(160)

At temperatures smaller than 100 MeV, after the QCD phase transition, the remaining relativistic particles in the cosmic plasma are electron/positrons, neutrinos and photons and the neutrino mean free path increases to

$$ \ell_{\rm mfp}\approx\frac{10}{9} \bigl(G_F^2 T^5\bigr)^{-1} $$
(161)

such that

$$ \nu( T\lesssim100 \mbox{ MeV}) \approx1.6 \times10^9 \ \frac {\mbox {GeV}^4}{T^5} . $$
(162)

The neutrino mean free path determines the viscosity until neutrinos decouple at T∼1.4 MeV, after which photons take over. Below 1 MeV, when electrons and positrons annihilate and the remaining electrons become non-relativistic, the viscosity can be approximated by

$$ \nu(T<0.5 \mbox{ MeV}) \approx(\sigma_T n_e)^{-1} \simeq0.5\times 10^{-22} \mbox{ GeV}^{-1} \biggl( \frac{ \mbox{ GeV}}{T} \biggr)^3 . $$
(163)

After neutrino decoupling, the viscosity drops by about 30 orders of magnitude and the Reynolds number increases correspondingly. Therefore, all scales on which turbulence is maintained until T∼1 MeV will the remain turbulent until decoupling, T∼1 eV.

But even if turbulence is lost before neutrino decoupling, as long as the magnetic field survives, it will become turbulent again after T∼1 MeV and we expect equipartition between the magnetic field and the velocity field to be re-established.

Summing up all the results we find

$$ \nu(T) \approx \left \{ \begin{array}{l@{\quad}l} 21.6\text{ GeV}^{-1} (\frac{ \text{ GeV}}{T} )& \text{if } T\gtrsim100 \text{ GeV}\\ 4.9 \times10^8 \text{ GeV}^{-1} (\frac{ \text{ GeV}}{T} )^5 & \text{if } 100 \text{ GeV}> T\gtrsim100 \text{ MeV}\\ 1.6 \times10^9 \text{ GeV}^{-1} (\frac{ \text{ GeV}}{T} )^5 & \text{if } 100 \text{ MeV}> T\gtrsim1 \text{ MeV}\\ 0.5\times10^{-22} \text{ GeV}^{-1} (\frac{ \text{ GeV}}{T} )^3 & \text{if } 0.5\text{ MeV}> T\gtrsim1 \text{ eV} . \end{array} \right . $$
(164)

The unphysical jumps come from regions where our approximations are invalid. Nevertheless, at neutrino decoupling viscosity is significantly reduced and turbulence resumes on the relevant scales. This is different after matter and radiation equality since then the Alfvén speed decays and the coupling of the magnetic field to the velocity field soon becomes negligible.

The evolution of ν with temperature is plotted in Fig. 20.

Fig. 20
figure 20

Evolution of the kinematic viscosity ν(T) as a function of temperature for T>1 eV. The unphysical discontinuities and kinks come from our crude approximation

1.2 A.2 Magnetic diffusivity

Here we derive expressions for the magnetic diffusivity also called resistivity for relativistic electrons in the cosmic plasma with temperatures 1 MeV <T<100 GeV. Again, we follow the treatment of Caprini et al. (2009c).

To determine the magnetic diffusivity, we derive an expression for the conductivity σ(T), which is the inverse of the diffusivity. The Lorentz force acting on an electron is

$$m_e\frac{du^\mu}{d\tau} = eF^{\mu\nu}u_\nu . $$

If we average this equation over a fluid element containing many electrons, the magnetic field term is sub-dominant. Even though the electrons are highly relativistic, the average fluid velocity is small. Furthermore \(\gamma=1/\sqrt{1-v_{e}^{2}} \simeq T/m_{e}\) is nearly constant and we may neglect the contribution / from du i/=d(γv i)/ above. With =γ −1dt=(m e /T) dt, this yields the following equation for the mean velocity of the electron fluid:

$$\frac{d\mathbf{v}}{dt} = \frac{e}{T} {\bf E} . $$

If we denote the collision time for the electrons by t c , they can acquire velocities of the order \(\mathbf{v}\simeq\frac{e}{T} {\bf E} t_{c}\) between successive collisions. Hence the current is

$${\bf J} \simeq en_e{\bf v} \simeq t_c \frac{e^2n_e}{T}{\bf E}\equiv \sigma{\bf E} $$

so that the conductivity becomes

$$\sigma= t_c\frac{e^2n_e}{T} . $$

We now derive an estimate for t c from Coulomb interactions. For a strong collision between the electron and another charged particle we need an impact parameter b such that e 2/b>E e T. Hence the cross section becomes σ t πb 2πe 4/T 2 (this simple argumentation neglects the Coulomb logarithms which enhance the cross section by ln(1/α min) where α min is the minimal deflection angle (see Landau and Lifschitz 1990). With v e =1 the time between collisions is therefore t c =1/(σ t n e )≃T 2/(πe 4 n e ) and

$$ \sigma\simeq\frac{T}{\pi e^2} . $$
(165)

Note that this result is independent of the electron density. This is physically sensible as n e enhances the current on the one hand but it reduces in the same way the collision time.

With (165) we obtain for the magnetic diffusivity

$$ \frac{1}{\sigma} \simeq\frac{e^2(T)}{4T} \simeq \frac{10^{-1}}{T} - \frac{10^{-2}}{T} . $$
(166)

The first value applies close to T∼100 GeV, where α=e 2/4π∼0.1, while the second value corresponds to low energies, T∼1 MeV. For non-relativistic electrons we obtain the standard result for the conductivity by simply replacing T by the electron mass and multiplication by v 3≃(m e /T)3/2 so that (Spitzer 1978)

$$ \frac{1}{\sigma} \simeq\frac{e^2m_e^{1/2}}{T^{3/2}} . $$
(167)

1.3 A.3 Reynolds numbers and Prandl number

The kinematic Reynolds number is given by

$$ {\mathrm{R}_k}(T) = \frac{v_K\lambda_K}{\tilde{\nu}(T)} , $$
(168)

where ν is the kinematic viscosity, \(v_{K} = \sqrt {k_{K}^{3}P_{v}(k_{K})}/(2\pi^{2})\) is the mean velocity which is roughly the velocity at the integral scale λ K =2π/k K , and \(\tilde{\nu}= \nu /a\), see Sect. 4.

Correspondingly, the magnetic Reynolds number is defined by

$$ {\mathrm{R}_m}(T) = \frac{v_A\lambda_B}{1/\tilde{\sigma}(T)} . $$
(169)

Inserting the resistivity from Eq. (166) and the kinematic viscosity from Eqs. (160) or (162), assuming equipartition so that v A =v K and λ B =λ K , we obtain for the Prandl number

$$ {\mathrm{P}_m} \equiv\frac{{\mathrm{R}_m}(k,T)}{{\mathrm{R}_k}(k,T)} = \nu(T)\sigma (T)\simeq10^{12} \biggl(\frac{\rm GeV}{T} \biggr)^4 . $$
(170)

This number is larger than 1 for all temperatures 1 MeV<T≪100 GeV where the derivation applies.

The non-linearities in the Euler and induction equation are stronger than the damping term whenever the Reynolds numbers are larger than unity. In this regime MHD turbulence develops.

1.4 A.4 The Prandl number at very high energy

Finally let us consider the situation at very high temperature assuming that all particle interactions are given by the same coupling strength g 2 and all particles are relativistic and in thermal equilibrium. This approximation is roughly valid above the electroweak scale. (We neglect strong interactions in this picture.) The cross section then is of the order of σ c g 4 T −2 and

$$ t_c=\lambda_{\rm mfp} = (\sigma_c n)^{-1} \simeq\frac{1}{g^4 T} \simeq \nu , \quad T> 100 \mbox{ GeV} . $$
(171)

This qualitatively reproduces Eq. (158). For the conductivity we have with the same approximations

$$ \sigma= t_c\frac{g^2n}{T} \simeq\frac{T}{g^2} , \quad T> 100\mbox { GeV} . $$
(172)

In this case the Prandl number becomes

$$ P \simeq g^{-2} \simeq10 , \quad T> 100\mbox{ GeV} . $$
(173)

It will be important for our discussions that at the electroweak phase transition T∼100 GeV, both, the kinetic viscosity and the magnetic diffusivity are actually of the same order. At significantly lower temperatures, the magnetic diffusivity is always much smaller than the kinetic viscosity. This is due to the fact that the kinetic viscosity is governed by the most weakly interacting particles, the neutrinos while the conductivity is of course determined by the stronger electromagnetic interactions.

Appendix B: Maxwell’s equation in curved spacetimes

We consider the 4-velocity u μ with u μ u μ=−1 in an arbitrary curved spacetime and define the electric and magnetic fields as in Sect. 2, Eqs. (3),

$$ E_\mu= F_{\mu\nu}u^\nu , \qquad B_\mu= \epsilon_{\mu\nu\gamma }F^{\nu \gamma}/2 , $$
(174)

such that

$$ F_{\mu\nu} = u_\mu E_\nu-u_\nu E_\mu+ \epsilon_{\mu\nu\gamma }B^\gamma . $$
(175)

We define the expansion rate θ, the shear σ μν , the vorticity ω νμ and the acceleration a μ of the 4-velocity u μ by

$$\begin{aligned} \theta =& u^\mu_{;\mu} , \qquad\sigma_{\mu\nu} = \frac {1}{2} \biggl(u_{\mu ;\nu} + u_{\nu;\mu} - \frac{1}{3} \theta h_{\mu\nu} \biggr) , \end{aligned}$$
(176)
$$\begin{aligned} \omega_{\mu\nu} =& \frac{1}{2} (u_{\mu;\nu} - u_{\nu;\mu} ) , \qquad a_\mu= u^\nu u_{\mu;\nu} . \end{aligned}$$
(177)

Here h μν =g μν +u μ u ν is the projector to the tangent space normal to u.

In terms of these quantities the homogeneous Maxwell equations, F (μν,α)=0, become (see Barrow et al. 2007)

$$\begin{aligned} h_{\mu\nu}u^\alpha{B^{\nu}}_{;\alpha} + \epsilon_{\mu\nu\gamma }E^{\nu;\gamma} =& \biggl( \sigma_{\mu\nu} + \omega_{\mu\nu} +\frac{1}{3} \theta h_{\mu\nu} \biggr)B^{\nu} -\epsilon_{\mu\nu \alpha }a^\nu E^\alpha, \end{aligned}$$
(178)
$$\begin{aligned} {B^{\nu}}_{;\nu} =& \epsilon_{\mu\nu\alpha} \omega^{\nu\alpha }E^\mu . \end{aligned}$$
(179)

The 3-component ϵ-tensor is given in terms of the totally antisymmetric tensor η βμνα by ϵ μνα =u β η βμνα , see Sect. 2.

Introducing the 4-current j μ , the charge density ρ e =−u μ j μ and the 3-current J μ =j μ ρ e u μ we obtain for the inhomogeneous Maxwell equations, F μν ;ν =j μ,

$$\begin{aligned} {E^{\nu}}_{;\nu} =& \rho_e - \epsilon_{\mu\nu\alpha}\omega ^{\nu\alpha }B^\mu , \end{aligned}$$
(180)
$$\begin{aligned} -h_{\mu\nu}u^\alpha{E^{\nu}}_{;\alpha} + \epsilon_{\mu\nu\gamma }B^{\nu;\gamma } =&- \biggl( \sigma_{\mu\nu} + \omega_{\mu\nu} +\frac{1}{3} \theta h_{\mu\nu} \biggr)E^{\nu} -\epsilon_{\mu\nu \alpha }a^\nu B^\alpha+J^\mu . \end{aligned}$$
(181)

The energy momentum tensor of the Maxwell field in terms of E, B and u is

$$\begin{aligned} T_{\mu\nu}^{\rm(em)} =& -F_{\mu\alpha}{F^\alpha}_\nu- \frac {1}{4}F_{\alpha \beta}F^{\alpha\beta}g_{\mu\nu} \\ =& \frac{1}{2}\bigl(E^2 + B^2 \bigr)u_\mu u_\nu+ \frac{1}{2}\bigl(E^2 + B^2\bigr)h_{\mu \nu} -E_\mu E_\nu-B_\mu B_\nu+ P_\mu u_\nu+ u_\mu P_\nu , \end{aligned}$$
(182)

where P μ =ϵ μαβ E α B β is the Poynting vector, i.e. the energy flux seen by an observer with 4-velocity u. The energy density is \(\rho^{\rm (em)} = T_{\mu\nu}^{\rm(em)}u^{\mu}u^{\nu}= (E^{2} + B^{2})/2\) and \(T_{\mu }^{\rm(em) \mu} =0\) as we expect it from the electromagnetic energy momentum tensor.

In a Friedmann Universe, for a comoving observer with u=a −1 t , these equations simplify considerably. Since ω μν =σ μν =a μ =0 and \(\theta= 3\dot{a}/a^{2} = 3H\), we obtain with (B μ )=a(0,B) and (E μ )=a(0,E).

$$\begin{aligned} \partial_t\bigl(a^2 \mathbf{B}\bigr)+ a^2\mathbf{\nabla}\wedge\mathbf{E} =& 0, \end{aligned}$$
(183)
$$\begin{aligned} \mathbf{\nabla}\cdot\mathbf{B} =& 0 , \end{aligned}$$
(184)
$$\begin{aligned} \mathbf{\nabla}\cdot\mathbf{E} =& a\rho_e , \end{aligned}$$
(185)
$$\begin{aligned} -\partial_t \bigl(a^2\mathbf{E}\bigr) +a^2 \mathbf{\nabla}\wedge\mathbf {B} =& a^3\mathbf{J} . \end{aligned}$$
(186)

Note that B and E scale like 1/a 2. In terms of the rescaled quantities a 2 B, a 2 E, and a 3 J, the Maxwell equations assume the same form as in Minkowski space, the expansion factor can be ‘scaled out’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrer, R., Neronov, A. Cosmological magnetic fields: their generation, evolution and observation. Astron Astrophys Rev 21, 62 (2013). https://doi.org/10.1007/s00159-013-0062-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-013-0062-7

Keywords

Navigation