Skip to main content
Log in

The faint radio sky: radio astronomy becomes mainstream

  • Review
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall “big picture” astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The standard flux density unit in radio astronomy is the Jansky (Jy), which is equivalent to \(10^{-23}\) erg \(\hbox {cm}^{-2}\) \(\hbox {s}^{-1}\) Hz\(^{-1}\). By today’s standards, strong radio sources have \(S_\mathrm{r} \gtrsim 1\) Jy, intermediate ones have 1 mJy \(\lesssim S_\mathrm{r} \lesssim 1\) Jy, while weak radio sources are below the mJy (soon \(\mu \)Jy) level.

  2. There was obviously no way I could mention all papers dealing with the many topics related to this review, which have appeared in the literature. I have, therefore, had to make choices and often resorted to the sentence “and references therein”. Moreover, I here deal exclusively with extragalactic sources; see, e.g. Sect. 3.8 of Norris et al. (2013) for a discussion of radio surveys of the Galactic plane.

  3. In this review, I use W Hz\(^{-1}\), i.e. power per unit frequency, which is commonly used in radio astronomy. It can be converted to erg \(\hbox {s}^{-1}\) at 1.4 GHz (\(\nu P_{\nu }\)), for example, by multiplying by \(1.4 \times 10^{16}\).

  4. The ratio between the observed luminosity and the Eddington luminosity, \(L_\mathrm{Edd} = 1.3 \times 10^{46}~(M/10^8 \mathrm M_{\odot })\) erg/s, where \(\mathrm M_{\odot }\) is one solar mass. This is the maximum luminosity a body can achieve when there is balance between radiation pressure (on the electrons) and gravitational force (on the protons).

  5. Most of the so-called “quasi-stellar galaxies” described by Sandage (1965) actually turned out to be stars (e.g. Kellermann 2015), but the concept of radio-quiet quasars (i.e. the existence of quasars with much weaker radio emission) proved to be correct.

  6. The words in italics highlight the presence of a thermal component (the UV bump, due to the accretion disk) in RL quasars and of a hot corona (producing the hard X-ray power law, due to inverse Compton of the optical/UV photons by high-energy electrons close to the disk) in RQ ones.

  7. At least based on current technology. One cannot exclude a scenario where, for example, the \(\gamma \)-ray flux in RQ AGN scales with \(S_\mathrm{r}\) and, therefore, is \(\approx 1000\) times fainter than that of the RL sources detected by Fermi. Based on the relative numbers of RQ and RL AGN estimated in Table 1 of Padovani (2011), the RQ AGN contribution to the \(\gamma \)-ray background in this case might be non-negligible, which would rule out this scenario, as there is no room left for other populations either than blazars, at least above 10 GeV (e.g. Giommi and Padovani 2015).

  8. It is generally understood that the distinction at \(M_\mathrm{B} \sim -23\) used in the past to separate quasars and Seyferts, or stellar and non-stellar (i.e. extended) sources, is not a physical one. In this review, I simply consider Seyfert 1’s to be lower luminosity versions of quasars. Nevertheless, this absolute magnitude might still be useful to roughly separate AGN fainter and brighter than the brightest galaxies (e.g. Condon et al. 2013).

  9. This name was first used by Ghisellini (2010).

  10. This equation differs from Eq. 11 in Zotti et al. (2010) by a factor \(1/f_\mathrm{L}(z)\), since they define their LFs as \(\varPhi (\mathrm log P\)); see Sect. 5.4.

  11. In terms of cosmic time, rather than redshift, it should be the other way around. Nevertheless, this is how these terms are generally used.

  12. These can be simply derived under the assumption of a uniform distribution of sources and Euclidean space since the number of sources is \(\propto D^3 \equiv (L/4\pi S)^{3/2}\). The integral counts, that is the number of objects seen on the sky with flux density \(>S\), will then be \(n(\ge S) \propto S^{-3/2}\), which translates into differential counts \(n(S) \propto S^{-5/2}\).

  13. This value depends on the LF, the assumed evolution, and on the redshift at which evolution stops.

  14. This is true only for the Euclidean normalized counts: the differential counts actually steepen.

  15. The subject of the “proper” estimation of radio number counts is a very complicated one, fraught with many issues, which go beyond the main scope (and length) of this review (see, for example, Condon et al. 2012; Hales et al. 2014a; Padovani et al. 2015a). Here, I briefly touch upon it.

  16. This is the uncertainty in observational estimates of extragalactic objects arising from the underlying large-scale density fluctuations, which is often significant, especially in deep surveys, which tend to cover relatively small areas.

  17. The interested reader can find a detailed account of this controversy in Sullivan (1984).

  18. In those early days, radio sources were named after the constellation in which they appeared followed by a letter. Thus, Taurus A was the first object discovered in the Taurus constellation.

  19. The local maximum powers are from Best et al. (2014) (radiative- and jet-mode RL AGN), Padovani et al. (2015a) (RQ AGN), and Mauch and Sadler (2007) (SFGs). The values at \(z \sim 3\) have been estimated using luminosity evolution models from Urry and Padovani (1995), Padovani et al. (2015a), and Padovani et al., in preparation

  20. The Atacama Large Millimeter/submillimeter Array (ALMA) can also determine redshifts of, for example, SFGs through their molecular emission lines at millimetre wavelengths (e.g. Weiß et al. 2013).

  21. I though that for modern radio surveys things have become more complex than they used to be but after chatting with Robert Laing, who played a big role in the optical identification of the 3CRR (Laing et al. 1983), I am not so sure!

  22. What follows below is an evolved and expanded version of Sect. 3 of Bonzini et al. (2013). The ranking order was mainly determined by looking at how many sources had their classification changed by a given indicator after the first three were applied to the E-CDFS sample.

  23. Blazar cores are also polarized, but blazars are relatively rare in the faint radio sky.

  24. I have made this sound easy but reality is, as usual, more complex. The reader should consult Sect. 3 of Bonzini et al. (2013) to get a feeling for the many subtleties and possible complications. In particular, not all radio sources are X-ray detected even in the deepest fields.

  25. Nowadays, the images corresponding to a few individual pointings are typically combined to form a mosaic image so this is less of an issue (e.g. Miller et al. 2013). Still, it needs to be taken into account.

  26. I stress that I have not picked the E-CDFS sample to put together Figs. 7 and 8 (and Fig. 9) because this is my own survey. After Sect. 2.3 and Fig. 5, in fact, one should expect the presence of RQ AGN in radio surveys, but the only radio counts I know of which include all classes of astrophysical sources, which make up the faint radio sky are those published by our group (Padovani et al. 2009, 2011, 2015a). Having a deep, sizeable radio sample, which is almost completely identified and where most of the sources have a redshift (spectroscopic or photometric), is not easy. But the real reason, I think, has to do with X-ray data: as shown in Table 1 the best indicator of RQ AGN is X-ray power (i.e. once RL AGN are singled out using the FIR–radio correlation, RQ ones are easily identified through their \(L_\mathrm{x}\)). For that one needs very deep X-ray data in a region of the sky where there are very deep radio data as well: and this means the E-CDFS, which at present reaches \(f_\mathrm{0.5 - 2\,keV} \sim 5 \times 10^{-18}\) erg \(\hbox {cm}^{-2}\) s\(^{-1}\) (Lehmer et al. 2012). Note that we still do not detect all radio sources in the X-ray band but \({\sim }60\%\) in the central region (Vattakunnel et al. 2012).

  27. \(P \times \varPhi (P) = 2.5/ln(10) \times \varPhi (M) \sim 1.09 \times \varPhi (M)\), where the units of \(\varPhi (M)\) are mag\(^{-1}\) volume\(^{-1}\). Note that these units are also sometimes used in the radio band: e.g. Condon (1989), Sadler et al. (2002), Mauch and Sadler (2007). The conversion, instead, to units of Mpc\(^{-3}\) dex\(^{-1}\) used, for example, by Simpson et al. (2012), is done by dividing my values by \(10^9/\mathrm{ln(10)}\). The \(P \times \varPhi (P)\) form allows an easy separation of luminosity and density evolution as the former simply translates the LF to higher powers with no change in number, while the opposite is true for the latter.

  28. They note that a solid interpretation of the time dependence of the SFRD from first principles is still missing (e.g. Mac Low 2013).

  29. The blazar community has been aware of the likely negative evolution of a sub-class of BL Lacs for quite some time: see Giommi et al. (2012) and references therein.

  30. This is a very active field with many papers published on the subject in the past few years: see, e.g. Madau and Dickinson (2014), Somerville and Davé (2015) and references therein.

  31. The E-CDFS RQ AGN have been selected mostly based on them falling within the SFG locus in the \(q_\mathrm{24\mu m} - z\) plane (Bonzini et al. 2013). One could, therefore, argue that the correlation they follow in Fig. 10 is a consequence of the selection method. However, SFGs and RQ AGN have different MIR characteristics: SFGs, for example, have an average dispersion in \(q_\mathrm{24\mu m~obs} \sim 0.33\) dex, which is twice as small as that of RQ AGN. This is mainly due to the relatively large AGN contribution at MIR wavelengths in many RQ AGN. In other words, one can effectively use the MIR to discard RL AGN, but this band is not good enough to obtain a reliable estimate of the SFR, for which one needs the FIR (i.e. Herschel).

  32. With the exception of NGC 1068 and NGC 4945, two Seyfert 2 galaxies in which the \(\gamma \)-ray emission is thought to be related to their starburst component (Ackermann et al. 2012b).

  33. http://www.aoc.nrao.edu/~akimball/radiocat_2.0.shtml.

  34. Everything there is to know about the SKA can be found at http://www.skatelescope.org. I give here only a very brief description of the project.

  35. http://science.nrao.edu/facilities/vla.

  36. http://www.astron.nl/radio-observatory/astronomers/lofar-astronomers.

  37. http://www.astron.nl/general/apertif/apertif.

  38. http://www.atnf.csiro.au/projects/askap/.

  39. http://www.e-merlin.ac.uk.

  40. http://www.ska.ac.za/meerkat.

  41. The simulation is accessible at http://s-cubed.physics.ox.ac.uk/s3_sex.

  42. http://quasars.org/milliquas.htm.

  43. I performed both tasks in Padovani (2011), whose main results I summarize and update here. Needless to say, the sensitivities of future facilities are inherently uncertain, especially if the latter have not yet been approved for construction.

  44. http://www.lsst.org.

  45. http://www.stsci.edu/jwst/.

  46. These include, in order of decreasing diameter size, the European Extremely Large Telescope (E-ELT; http://www.eso.org/sci/facilities/eelt/), the Thirty Meter Telescope (TMT; http://www.tmt.org/), and the Giant Magellan Telescope (GMT; http://www.gmto.org/).

  47. Available at https://www.skatelescope.org/books/.

  48. By saying “quasar” I refer here only to radiative-mode AGN

  49. I have discussed two of them in Padovani (2011) and summarize the main points here.

  50. At the time of writing (mid-2016) I have found 16 refereed papers with the words “jetted AGN” in their abstract.

Abbreviations

6dFGS:

6 Degree field galaxy survey

AGN:

Active galactic nuclei

ARCADE2:

Absolute radiometer for cosmology, astrophysics and diffuse emission

ALMA:

Atacama large millimeter/submillimeter array

BL Lacs:

BL Lacertae objects

CSS:

Compact steep-spectrum

E-CDFS:

Extended Chandra deep field south

E-ELT:

European extremely large telescope

ELT:

Extremely large telescope

EMU:

Evolutionary map of the universe

ESA:

European space agency

FIR:

Far-IR

FR:

Fanaroff–Riley

FSRQ:

Flat-spectrum radio quasar

FWHM:

Fullwidth half maximum

GMT:

Giant Magellan telescope

GOODS:

Great observatories origins deep survey

GPS:

GHz peaked-spectrum

HERG:

High-excitation radio galaxy

HUDF:

Hubble ultra deep field

IR:

Infrared

IRAC:

Infrared array camera

IRAS:

Infrared astronomical satellite

ISO:

Infrared space observatory

JVLA:

Karl G. Jansky very large array

JWST:

James Webb space telescope

Jy:

Jansky

LERG:

Low-excitation radio galaxy

LF :

Luminosity function

LOFAR :

Low frequency array

LSST :

Large synoptic survey telescope

MIR:

Mid-IR

NIR:

Near-IR

NRAO:

National radio astronomy observatory

NVSS:

NRAO VLA sky survey

PACS:

Photoconductor array camera and spectrometer

PDE:

Pure density evolution

PLE:

Pure luminosity evolution

R:

Radio-to-optical flux density ratio

RG:

Radio galaxy

RL:

Radio-loud

RQ:

Radio-quiet

SB:

Starburst galaxy

SED:

Spectral energy distribution

SDSS:

Sloan digital sky survey

SF:

Star formation

SFG:

Star-forming galaxy

SFR:

Star formation rate

SFRD:

Star formation rate density

SKA:

Square kilometre Array

SKADS:

SKA design study

S/N:

Signal-to-noise

SPICA:

Space infrared telescope for cosmology and astrophysics

SSRQ:

Steep-spectrum radio quasar

SUMSS:

Sydney university Molonglo sky survey

3CRR:

Third Cambridge catalogue of radio sources

TMT:

Thirty meter telescope

UV:

Ultraviolet

VLA:

Very large array

VLBI:

Very long baseline interferometry

WFIRST:

Wide-field InfraRed survey telescope

References

  • Abdalla FB, Bull P, Camera S, Benoit-Lévy A, Joachimi B, Kirk D, Kloeckner HR, Maartens R, et al. (2015) Cosmology from HI galaxy surveys with the SKA. Adv Astrophys Sq Km Array (AASKA14) 17:1283

  • Acero F, Ackermann M, Ajello M, Albert A, Atwood WB, Axelsson M, Baldini L, Ballet J et al (2015) Fermi large area telescope third source catalog. Astrophys J Suppl 218:23. doi:10.1088/0067-0049/218/2/23

    Article  ADS  Google Scholar 

  • Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bechtol K et al (2012a) Search for gamma-ray emission from x-ray-selected seyfert galaxies with fermi-LAT. Astrophys J 747:104. doi:10.1088/0004-637X/747/2/104

    Article  ADS  Google Scholar 

  • Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Bastieri D, Bechtol K, Bellazzini R et al (2012b) GeV observations of star-forming galaxies with the fermi large area telescope. Astrophys J 755:164. doi:10.1088/0004-637X/755/2/164

    Article  ADS  Google Scholar 

  • Antonucci R (1993) Unified models for active galactic nuclei and quasars. Annu Rev Astron Astrophys 31:473–521. doi:10.1146/annurev.aa.31.090193.002353

    Article  ADS  Google Scholar 

  • Antonucci R (2012) A panchromatic review of thermal and nonthermal active galactic nuclei. Astron Astrophys Trans 27:557–602

    ADS  Google Scholar 

  • Baade W, Minkowski R (1954) On the identification of radio sources. Astrophys J 119:215–231. doi:10.1086/145813

    Article  ADS  Google Scholar 

  • Baldi RD, Capetti A (2010) Spectro-photometric properties of the bulk of the radio-loud AGN population. Astron Astrophys 519:A48. doi:10.1051/0004-6361/201014446

    Article  ADS  Google Scholar 

  • Baldi RD, Capetti A, Giovannini G (2015) Pilot study of the radio-emitting AGN population: the emerging new class of FR 0 radio-galaxies. Astron Astrophys 576:A38. doi:10.1051/0004-6361/201425426

    Article  ADS  Google Scholar 

  • Baldwin JA, Phillips MM, Terlevich R (1981) Classification parameters for the emission-line spectra of extragalactic objects. Publ Astron Soc Pac. 93:5–19. doi:10.1086/130766

    Article  ADS  Google Scholar 

  • Balmaverde B, Capetti A (2006) The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every “core” galaxy? Astron Astrophys 447:97–112. doi:10.1051/0004-6361:20054031

    Article  ADS  Google Scholar 

  • Baloković M, Smolčić V, Ivezić Ž, Zamorani G, Schinnerer E, Kelly BC (2012) Disclosing the radio loudness distribution dichotomy in quasars: an unbiased Monte Carlo approach applied to the SDSS-FIRST quasar sample. Astrophys J 759:30. doi:10.1088/0004-637X/759/1/30

    Article  ADS  Google Scholar 

  • Barcons X, Nandra K, Barret D, den Herder J-W, Fabian AC, Piro L, Watson MG, the Athena Team, et al (2015) Athena: the X-ray observatory to study the hot and energetic Universe. J Phys Conf Ser 610:012008. doi:10.1088/1742-6596/610/1/012008

  • Barthel PD (1989) Is every quasar beamed? Astrophys J 336:606–611. doi:10.1086/167038

    Article  ADS  Google Scholar 

  • Beckwith SVW, Stiavelli M, Koekemoer AM, Caldwell JAR, Ferguson HC, Hook R, Lucas RA, Bergeron LE et al (2006) The Hubble ultra deep field. Astronom J 132:1729–1755. doi:10.1086/507302

    Article  ADS  Google Scholar 

  • Bell EF (2003) Estimating star formation rates from infrared and radio luminosities: the origin of the radio-infrared correlation. Astrophys J 586:794–813. doi:10.1086/367829

    Article  ADS  Google Scholar 

  • Best PN, Kauffmann G, Heckman TM, Ivezić Ž (2005) A sample of radio-loud active galactic nuclei in the Sloan digital sky survey. MNRAS 362:9–24. doi:10.1111/j.1365-2966.2005.09283.x

    Article  ADS  Google Scholar 

  • Best PN, Kauffmann G, Heckman TM, Brinchmann J, Charlot S, Ivezić Ž, White SDM (2005) The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback. MNRAS 362:25–40. doi:10.1111/j.1365-2966.2005.09192.x

    Article  ADS  Google Scholar 

  • Best PN, Ker LM, Simpson C, Rigby EE, Sabater J (2014) The cosmic evolution of radio-AGN feedback to \(z = 1\). MNRAS 445:955–969. doi:10.1093/mnras/stu1776

    Article  ADS  Google Scholar 

  • Béthermin M, Dole H, Beelen A, Aussel H (2010) Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background. Astron Astrophys 512:A78. doi:10.1051/0004-6361/200913279

    Article  Google Scholar 

  • Biggs AD, Ivison RJ (2006) A catalogue of \(\mu \)Jy radio sources in northern legacy fields. MNRAS 371:963–971. doi:10.1111/j.1365-2966.2006.10730.x

    Article  ADS  Google Scholar 

  • Bolton JG, Stanley GJ, Slee OB (1949) Positions of three discrete sources of galactic radio-frequency radiation. Nature 164:101–102. doi:10.1038/164101b0

    Article  ADS  Google Scholar 

  • Bondi M, Ciliegi P, Schinnerer E, Smolčić V, Jahnke K, Carilli C, Zamorani G (2008) The VLA-COSMOS survey. III. Further catalog analysis and the radio source counts. Astrophys J 681:1129–1135. doi:10.1086/589324

    Article  ADS  Google Scholar 

  • Bongiorno A, Mignoli M, Zamorani G, Lamareille F, Lanzuisi G, Miyaji T, Bolzonella M, Carollo CM et al (2010) The [O III] emission line luminosity function of optically selected type-2 AGN from zCOSMOS. Astron Astrophys 510:A56. doi:10.1051/0004-6361/200913229

    Article  ADS  Google Scholar 

  • Bonzini M, Mainieri V, Padovani P, Kellermann KI, Miller N, Rosati P, Tozzi P, Vattakunnel S et al (2012) The sub-mJy radio population of the E-CDFS: optical and infrared counterpart identification. Astrophys J Suppl 203:15. doi:10.1088/0067-0049/203/1/15

    Article  ADS  Google Scholar 

  • Bonzini M, Padovani P, Mainieri V, Kellermann KI, Miller N, Rosati P, Tozzi P, Vattakunnel S et al (2013) The sub-mJy radio sky in the extended Chandra deep field-south: source population. MNRAS 436:3759–3771. doi:10.1093/mnras/stt1879

    Article  ADS  Google Scholar 

  • Bonzini M, Mainieri V, Padovani P, Andreani P, Berta S, Bethermin M, Lutz D, Rodighiero G et al (2015) Star formation properties of sub-mJy radio sources. MNRAS 453:1079–1094. doi:10.1093/mnras/stv1675

    Article  ADS  Google Scholar 

  • Boroson TA, Green RF (1992) The emission-line properties of low-redshift quasi-stellar objects. Astrophys J Suppl Ser 80:109–135. doi:10.1086/191661

  • Brandt WN, Alexander DM (2015) Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron Astrophys Rev 23:1. doi:10.1007/s00159-014-0081-z

  • Capetti A, Kharb P, Axon DJ, Merritt D, Baldi RD (2009) A very large array radio survey of early-type galaxies in the virgo cluster. Astronom J 138:1990–1997. doi:10.1088/0004-6256/138/6/1990

    Article  ADS  Google Scholar 

  • Capetti A, Raiteri CM (2015) Looking below the floor: constraints on the AGN radio luminosity functions at low power. MNRAS 449:L128–L131. doi:10.1093/mnrasl/slv030

    Article  ADS  Google Scholar 

  • Caplar N, Lilly SJ, Trakhtenbrot B (2015) AGN evolution from a galaxy evolution viewpoint. Astrophys J 811:148. doi:10.1088/0004-637X/811/2/148

    Article  ADS  Google Scholar 

  • Chi S, Barthel PD, Garrett MA (2013) Deep, wide-field, global VLBI observations of the Hubble deep field north (HDF-N) and flanking fields (HFF). Astron Astrophys 550:A68. doi:10.1051/0004-6361/201220783

    Article  ADS  Google Scholar 

  • Chiaberge M, Capetti A, Celotti A (1999) The HST view of FR I radio galaxies: evidence for non-thermal nuclear sources. Astron Astrophys 349:77–87

    ADS  Google Scholar 

  • Chiaberge M, Macchetto FD, Sparks WB, Capetti A, Allen MG, Martel AR (2002) The nuclei of radio galaxies in the ultraviolet: the signature of different emission processes. Astrophys J 571:247–255. doi:10.1086/339846

    Article  ADS  Google Scholar 

  • Chiaberge M, Gilli R, Lotz JM, Norman C (2015) Radio loud AGNs are mergers. Astrophys J 806:147. doi:10.1088/0004-637X/806/2/147

    Article  ADS  Google Scholar 

  • Ciliegi P, Zamorani G, Hasinger G, Lehmann I, Szokoly G, Wilson G (2003) A deep VLA survey at 6 cm in the Lockman Hole. Astron Astrophys 398:901–918. doi:10.1051/0004-6361:20021721

    Article  ADS  Google Scholar 

  • Comastri A, Gilli R, Hasinger G (2005) Rolling down from the 30 keV peak: modelling the hard X-ray and \(\gamma \)-ray backgrounds. Exp Astron 20:41–47. doi:10.1007/s10686-006-9041-6

    Article  ADS  Google Scholar 

  • Condon JJ (1984) Cosmological evolution of radio sources found at 1.4 GHz. Astrophys J 284:44–53. doi:10.1086/162382

    Article  ADS  Google Scholar 

  • Condon JJ, Mitchell KJ (1984) A deeper VLA survey of the alpha \(=\) 08h52m15s, delta \(=\) +17 deg 16 arcmin field. Astronom J 89:610–617. doi:10.1086/113556

    Article  ADS  Google Scholar 

  • Condon JJ (1989) The 1.4 gigahertz luminosity function and its evolution. Astrophys J 338:13–23. doi:10.1086/167176

    Article  ADS  Google Scholar 

  • Condon JJ (1992) Radio emission from normal galaxies. Annu Rev Astron Astr 30:575–611. doi:10.1146/annurev.aa.30.090192.003043

    Article  ADS  Google Scholar 

  • Condon JJ, Cotton WD, Greisen EW, Yin QF, Perley RA, Taylor GB, Broderick JJ (1998) The NRAO VLA sky survey. Astronom J 115:1693–1716. doi:10.1086/300337

    Article  ADS  Google Scholar 

  • Condon JJ, Cotton WD, Fomalont EB, Kellermann KI, Miller N, Perley RA, Scott D, Vernstrom T et al (2012) Resolving the radio source background: deeper understanding through confusion. Astrophys J 758:23. doi:10.1088/0004-637X/758/1/23

    Article  ADS  Google Scholar 

  • Condon JJ, Kellermann KI, Kimball AE, Ivezić Ž, Perley RA (2013) Active galactic nucleus and starburst radio emission from optically selected quasi-stellar objects. Astrophys J 768:37. doi:10.1088/0004-637X/768/1/37

    Article  ADS  Google Scholar 

  • Croton DJ, Springel V, White SDM, De Lucia G, Frenk CS, Gao L, Jenkins A, Kauffmann G et al (2006) The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 365:11–28. doi:10.1111/j.1365-2966.2005.09675.x

    Article  ADS  Google Scholar 

  • Daddi E, Dickinson M, Morrison G, Chary R, Cimatti A, Elbaz D, Frayer D, Renzini A et al (2007) Multiwavelength study of massive galaxies at \(z\sim 2\). I. Star formation and galaxy growth. Astrophys J 670:156–172. doi:10.1086/521818

    Article  ADS  Google Scholar 

  • D’Elia V, Padovani P, Giommi P, Turriziani S (2015) Are many radio-selected BL lacs radio quasars in disguise? MNRAS 449:3517–3521. doi:10.1093/mnras/stv573

    Article  ADS  Google Scholar 

  • de Zotti G, Massardi M, Negrello M, Wall J (2010) Radio and millimeter continuum surveys and their astrophysical implications. Astron Astrophys Rev 18:1–65. doi:10.1007/s00159-009-0026-0

    Article  ADS  Google Scholar 

  • Donley JL, Koekemoer AM, Brusa M, Capak P, Cardamone CN, Civano F, Ilbert O, Impey CD et al (2012) Identifying luminous active galactic nuclei in deep surveys: revised IRAC selection criteria. Astrophys J 748:142. doi:10.1088/0004-637X/748/2/142

    Article  ADS  Google Scholar 

  • Dunlop JS, Peacock JA (1990) The redshift cut-off in the luminosity function of radio galaxies and quasars. MNRAS 247:19–42

    ADS  Google Scholar 

  • Dunlop JS, McLure RJ, Kukula MJ, Baum SA, O’Dea CP, Hughes DH (2003) Quasars, their host galaxies and their central black holes. MNRAS 340:1095–1135. doi:10.1046/j.1365-8711.2003.06333.x

    Article  ADS  Google Scholar 

  • Elbaz D, Daddi E, Le Borgne D, Dickinson M, Alexander DM, Chary R-R, Starck J-L, Brandt WN et al (2007) The reversal of the star formation-density relation in the distant universe. Astron Astrophys 468:33–48. doi:10.1051/0004-6361:20077525

    Article  ADS  Google Scholar 

  • Ellison SL, Teimoorinia H, Rosario DJ, Mendel JT (2016) The star formation rates of active galactic nuclei host galaxies. MNRAS 458:L34–L38. doi:10.1093/mnrasl/slw012

    Article  ADS  Google Scholar 

  • Evans DA, Worrall DM, Hardcastle MJ, Kraft RP, Birkinshaw M (2006) Chandra and XMM-Newton observations of a sample of low-redshift FR I and FR II radio galaxy nuclei. Astrophys J 642:96–112. doi:10.1086/500658

    Article  ADS  Google Scholar 

  • Fanaroff BL, Riley JM (1974) The morphology of extragalactic radio sources of high and low luminosity. MNRAS 167:31P–36P

    Article  ADS  Google Scholar 

  • Fixsen DJ, Kogut A, Levin S, Limon M, Lubin P, Mirel P, Seiffert M, Singal J et al (2011) ARCADE 2 measurement of the absolute sky brightness at 3–90 GHz. Astrophys J 734:5. doi:10.1088/0004-637X/734/1/5

    Article  ADS  Google Scholar 

  • Flesch EW (2015) The half million quasars (HMQ) catalogue. Publ Astron Soc Aust 32:e010. doi:10.1017/pasa.2015.10

    Article  ADS  Google Scholar 

  • Fomalont EB, Kellermann KI, Wall JV, Weistrop D (1984) A deep 6-centimeter radio source survey. Science 225:23–28. doi:10.1126/science.225.4657.23

    Article  ADS  Google Scholar 

  • Garofalo D, Evans DA, Sambruna RM (2010) The evolution of radio-loud active galactic nuclei as a function of black hole spin. MNRAS 406:975–986. doi:10.1111/j.1365-2966.2010.16797.x

    ADS  Google Scholar 

  • Gehrels N (1986) Confidence limits for small numbers of events in astrophysical data. Astrophys J 303:336–346. doi:10.1086/164079

    Article  ADS  Google Scholar 

  • Gehrels N, Spergel D (2015) Wide-field infraRed survey telescope (WFIRST) mission and synergies with LISA and LIGO-Virgo. J Phys Conf Ser 610:012007. doi:10.1088/1742-6596/610/1/012007

    Article  ADS  Google Scholar 

  • Gendre MA, Best PN, Wall JV, Ker LM (2013) The relation between morphology, accretion modes and environmental factors in local radio AGN. MNRAS 430:3086–3101. doi:10.1093/mnras/stt116

    Article  ADS  Google Scholar 

  • Ghisellini G, Celotti A (2001) The dividing line between FR I and FR II radio-galaxies. Astron Astrophys 379:L1–L4. doi:10.1051/0004-6361:20011338

    Article  ADS  Google Scholar 

  • Ghisellini G (2010) The jet/disk connection in blazars. Am Inst Phys Conf Ser 1242:43–54. doi:10.1063/1.3460151

    ADS  Google Scholar 

  • Giacconi R, Rosati P, Tozzi P, Nonino M, Hasinger G, Norman C, Bergeron J, Borgani S et al (2001) First results from the X-ray and optical survey of the Chandra deep field south. Astrophys J 551:624–634. doi:10.1086/320222

    Article  ADS  Google Scholar 

  • Giommi P, Colafrancesco S, Padovani P, Gasparrini D, Cavazzuti E, Cutini S (2009) The number counts, luminosity functions, and evolution of microwave-selected (WMAP) blazars and radio galaxies. Astron Astrophys 508:107–115. doi:10.1051/0004-6361/20078905

    Article  ADS  Google Scholar 

  • Giommi P, Padovani P, Polenta G, Turriziani S, D’Elia V, Piranomonte S (2012) A simplified view of blazars: clearing the fog around long-standing selection effects. MNRAS 420:2899–2911. doi:10.1111/j.1365-2966.2011.20044.x

    Article  ADS  Google Scholar 

  • Giommi P, Padovani P, Polenta G (2013) A simplified view of blazars: the \(\gamma \)-ray case. MNRAS 431:1914–1922. doi:10.1093/mnras/stt305

    Article  ADS  Google Scholar 

  • Giommi P, Padovani P (2015) A simplified view of blazars: contribution to the X-ray and \(\gamma \)-ray extragalactic backgrounds. MNRAS 450:2404–2409. doi:10.1093/mnras/stv793

    Article  ADS  Google Scholar 

  • Gregory PC, Scott WK, Douglas K, Condon JJ (1996) The GB6 catalog of radio sources. Astrophys J Suppl 103:427–432. doi:10.1086/192282

    Article  ADS  Google Scholar 

  • Gruppioni C, Mignoli M, Zamorani G (1999) Optical identifications and spectroscopy of a faint radio source sample: the nature of the sub-mJy population. MNRAS 304:199–217. doi:10.1046/j.1365-8711.1999.02301.x

    Article  ADS  Google Scholar 

  • Gruppioni C, Pozzi F, Zamorani G, Ciliegi P, Lari C, Calabrese E, La Franca F, Matute I et al (2003) The radio-mid-infrared correlation and the contribution of 15-\(\mu \)m galaxies to the 1.4-GHz source counts. MNRAS 341:L1–L6. doi:10.1046/j.1365-8711.2003.06601.x

    Article  ADS  Google Scholar 

  • Gruppioni C, Pozzi F, Rodighiero G, Delvecchio I, Berta S, Pozzetti L, Zamorani G, Andreani P et al (2013) The Herschel PEP/HerMES luminosity function—I. Probing the evolution of PACS selected Galaxies to \(z \simeq 4\). MNRAS 432:23–52. doi:10.1093/mnras/stt308

    Article  ADS  Google Scholar 

  • Haarsma DB, Partridge RB, Windhorst RA, Richards EA (2000) Faint radio sources and star formation history. Astrophys J 544:641–658. doi:10.1086/317225

    Article  ADS  Google Scholar 

  • Hales CA, Norris RP, Gaensler BM, Middelberg E, Chow KE, Hopkins AM, Huynh MT, Lenc E et al (2014) ATLAS 1.4 GHz data release 2—I. Observations of the CDF-S and ELAIS-S1 fields and methods for constructing differential number counts. MNRAS 441:2555–2592. doi:10.1093/mnras/stu576

    Article  ADS  Google Scholar 

  • Hales CA, Norris RP, Gaensler BM, Middelberg E (2014) ATLAS 1.4 GHz data release 2—II. Properties of the faint polarized sky. MNRAS 440:3113–3139. doi:10.1093/mnras/stu500

    Article  ADS  Google Scholar 

  • Hardcastle MJ, Evans DA, Croston JH (2006) The X-ray nuclei of intermediate-redshift radio sources. MNRAS 370:1893–1904. doi:10.1111/j.1365-2966.2006.10615.x

    Article  ADS  Google Scholar 

  • Harrison FA, Aird J, Civano F, Lansbury G, Mullaney JR, Ballantyne DR, Alexander DM, Stern D et al. (2015) The NuSTAR extragalactic surveys: the number counts of active galactic nuclei and the resolved fraction of the cosmic X-ray background. Astrophys J (submitted). arXiv:1511.04183

  • Hasinger G, Altieri B, Arnaud M, Barcons X, Bergeron J, Brunner H, Dadina M, Dennerl K et al (2001) XMM-Newton observation of the Lockman hole. I. The X-ray data. Astron Astrophys 365:L45–L50. doi:10.1051/0004-6361:20000046

    Article  ADS  Google Scholar 

  • Hatziminaoglou E, Pérez-Fournon I, Polletta M, Afonso-Luis A, Hernán-Caballero A, Montenegro-Montes FM, Lonsdale C, Xu CK et al (2005) Sloan digital sky survey quasars in the Spitzer wide-area infrared extragalactic survey (SWIRE) ELAIS N1 field: properties and spectral energy distributions. Astron J 129:1198–1211. doi:10.1086/428003

    Article  ADS  Google Scholar 

  • Heald GH, Pizzo RF, Orrú E, Breton RP, Carbone D, Ferrari C, Hardcastle MJ, Jurusik W et al (2015) The LOFAR multifrequency snapshot sky survey (MSSS). I. Survey description and first results. Astron Astrophys 582:A123. doi:10.1051/0004-6361/201425210

    Article  ADS  Google Scholar 

  • Heckman TM, Best PN (2014) The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu Rev Astron Astr 52:589–660. doi:10.1146/annurev-astro-081913-035722

    Article  ADS  Google Scholar 

  • Helou G, Soifer BT, Rowan-Robinson M (1985) Thermal infrared and nonthermal radio-remarkable correlation in disks of galaxies. Astrophys J Lett 298:L7–L11. doi:10.1086/184556

    Article  ADS  Google Scholar 

  • Herrera Ruiz N, Middelberg E, Norris RP, Maini A (2016) Unveiling the origin of the radio emission in radio-quiet quasars. Astron Astrophys 589:L2. doi:10.1051/0004-6361/201628302

    Article  ADS  Google Scholar 

  • Hickox RC, Mullaney JR, Alexander DM, Chen C-TJ, Civano FM, Goulding AD, Hainline KN (2014) Black hole variability and the star formation-active galactic nucleus connection: do all star-forming galaxies host an active galactic nucleus? Astrophys J 782:9. doi:10.1088/0004-637X/782/1/9

    Article  ADS  Google Scholar 

  • Hine RG, Longair MS (1979) Optical spectra of 3CR radio galaxies. MNRAS 188:111–130. doi:10.1093/mnras/188.1.111

    Article  ADS  Google Scholar 

  • Hopkins AM (2004) On the evolution of star-forming galaxies. Astrophys J 615:209–221. doi:10.1086/424032

    Article  ADS  Google Scholar 

  • Hopkins PF, Richards GT, Hernquist L (2007) An observational determination of the bolometric quasar luminosity function. Astrophys J 654:731–753. doi:10.1086/509629

    Article  ADS  Google Scholar 

  • Hopkins PF, Hernquist L (2009) A characteristic division between the fueling of quasars and seyferts: five simple tests. Astrophys J 694:599–609. doi:10.1088/0004-637X/694/1/599

    Article  ADS  Google Scholar 

  • Hopkins PF, Hickox R, Quataert E, Hernquist L (2009) Are most low-luminosity active galactic nuclei really obscured? MNRAS 398:333–349. doi:10.1111/j.1365-2966.2009.15136.x

    Article  ADS  Google Scholar 

  • Hurley-Walker N, Morgan J, Wayth RB, Hancock PJ, Bell ME, Bernardi G, Bhat R, Briggs F et al (2014) The Murchison widefield array commissioning survey: a low-frequency catalogue of 14110 compact radio sources over 6 100 Square Degrees. Publ Astron Soc Aust 31:e045. doi:10.1017/pasa.2014.40

    Article  ADS  Google Scholar 

  • Huynh MT, Jackson CA, Norris RP, Prandoni I (2005) Radio observations of the Hubble deep field-south region. II. The 1.4 GHz catalog and source counts. Astronom J 130:1373–1388. doi:10.1086/432873

    Article  ADS  Google Scholar 

  • Ilbert O, McCracken HJ, Le Fèvre O, Capak P, Dunlop J, Karim A, Renzini MA, Caputi K et al (2013) Mass assembly in quiescent and star-forming galaxies since z \(\simeq \) 4 from UltraVISTA. Astron Astrophys 556:A55. doi:10.1051/0004-6361/201321100

    Article  ADS  Google Scholar 

  • Jarvis MJ, Rawlings S (2004) The accretion history of the universe with the SKA. New Astronom Rev 48:1173–1185. doi:10.1016/j.newar.2004.09.006

    Article  ADS  Google Scholar 

  • Jarvis M, Seymour N, Afonso J, Best P, Beswick R, Heywood I, Huynh M, Murphy E et al. (2015) The star-formation history of the Universe with the SKA. Adv Astrophys Sq Km Array (AASKA14) 68:1009

  • Karim A, Schinnerer E, Martínez-Sansigre A, Sargent MT, van der Wel A, Rix H-W, Ilbert O, Smolčić V et al (2011) The star formation history of mass-selected galaxies in the COSMOS field. Astrophys J 730:61. doi:10.1088/0004-637X/730/2/61

    Article  ADS  Google Scholar 

  • Kellermann KI, Sramek R, Schmidt M, Shaffer DB, Green R (1989) VLA observations of objects in the Palomar bright quasar survey. Astronom J 98:1195–1207. doi:10.1086/115207

    Article  ADS  Google Scholar 

  • Kellermann KI (2015) The road to quasars. IAU Symp 313:190–195. doi:10.1017/S1743921315002185

    ADS  Google Scholar 

  • Kennicutt RC Jr (1998) Star formation in galaxies along the Hubble sequence. Annu Rev Astron Astrophys 36:189–232. doi:10.1146/annurev.astro.36.1.189

    Article  ADS  Google Scholar 

  • Kewley LJ, Maier C, Yabe K, Ohta K, Akiyama M, Dopita MA, Yuan T (2013) The cosmic BPT diagram: confronting theory with observations. Astrophys J Lett 774:L10. doi:10.1088/2041-8205/774/1/L10

    Article  ADS  Google Scholar 

  • Kimball AE, Ivezić Ž (2008) A unified catalog of radio objects detected by NVSS, first, WENSS, GB6, and SDSS. Astronom J 136:684–712. doi:10.1088/0004-6256/136/2/684

    Article  ADS  Google Scholar 

  • Kimball AE, Ivezić Ž (2014) An updated multi-wavelength radio and optical catalog of quasars and radio galaxies. Multiwavelength AGN Surveys Stud IAU Symp 304:238–239. doi:10.1017/S1743921314003901

    ADS  Google Scholar 

  • Kimball AE, Kellermann KI, Condon JJ, Ivezić Ž, Perley RA (2011) The two-component radio luminosity function of quasi-stellar objects: star formation and active galactic nucleus. Astrophys J Lett 739:L29. doi:10.1088/2041-8205/739/1/L29

    Article  ADS  Google Scholar 

  • King AJ, Rowan-Robinson M (2004) Linking radio to infrared: a radio source count model. MNRAS 349:1353–1360. doi:10.1111/j.1365-2966.2004.07605.x

    Article  ADS  Google Scholar 

  • Kormendy J, Ho LC (2013) Coevolution (Or Not) of supermassive black holes and host galaxies. Annu Rev Astron Astr 51:511–653. doi:10.1146/annurev-astro-082708-101811

    Article  ADS  Google Scholar 

  • Kühr H, Witzel A, Pauliny-Toth IIK, Nauber U (1981) A catalogue of extragalactic radio sources having flux densities greater than 1 Jy at 5 GHz. Astron Astrophys Suppl 45:367–430

    ADS  Google Scholar 

  • Lacy M, Storrie-Lombardi LJ, Sajina A, Appleton PN, Armus L, Chapman SC, Choi PI, Fadda D et al (2004) Obscured and unobscured active galactic nuclei in the spitzer space telescope first look survey. Astrophys J Suppl 154:166–169. doi:10.1086/422816

    Article  ADS  Google Scholar 

  • Laing RA, Riley JM, Longair MS (1983) Bright radio sources at 178 MHz–Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. MNRAS 204:151–187. doi:10.1093/mnras/204.1.151

    Article  ADS  Google Scholar 

  • Laing RA, Jenkins CR, Wall JV, Unger SW (1994) Spectrophotometry of a complete sample of 3CR radio sources: implications for unified models. Phys Act Galaxies 54:201

    ADS  Google Scholar 

  • Ledlow MJ, Owen FN (1996) 20 CM VLA survey of abell clusters of galaxies. VI. Radio/optical luminosity functions. Astronom J 112:9–22. doi:10.1086/117985

    Article  ADS  Google Scholar 

  • Le Fèvre O, Cassata P, Cucciati O, Garilli B, Ilbert O, Le Brun V, Maccagni D, Moreau C et al (2013) The VIMOS VLT deep survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to \(z \sim 6.7\) selected with 17.5 \( \le i_{AB} \le \) 24.75. Astron Astrophys 559:A14. doi:10.1051/0004-6361/201322179

    Article  Google Scholar 

  • Lehmann I, Hasinger G, Schmidt M, Giacconi R, Trümper J, Zamorani G, Gunn JE, Pozzetti L et al (2001) The ROSAT deep survey. VI. X-ray sources and optical identifications of the ultra deep survey. Astron Astrophys 371:833–857. doi:10.1051/0004-6361:20010419

    Article  ADS  Google Scholar 

  • Lehmer BD, Xue YQ, Brandt WN, Alexander DM, Bauer FE, Brusa M, Comastri A, Gilli R et al (2012) The 4 Ms Chandra deep field-south number counts apportioned by source class: pervasive active galactic nuclei and the ascent of normal galaxies. Astrophys J 752:46. doi:10.1088/0004-637X/752/1/46

    Article  ADS  Google Scholar 

  • Longair MS (1966) On the interpretation of radio source counts. MNRAS 133:421–436. doi:10.1093/mnras/133.4.421

    Article  ADS  Google Scholar 

  • Luo B, Bauer FE, Brandt WN, Alexander DM, Lehmer BD, Schneider DP, Brusa M, Comastri A et al (2008) The Chandra deep field-south survey: 2 Ms source catalogs. Astrophys J Suppl 179:19–36. doi:10.1086/591248

    Article  ADS  Google Scholar 

  • McAlpine K, Jarvis MJ, Bonfield DG (2013) Evolution of faint radio sources in the VIDEO-XMM3 field. MNRAS 436:1084–1095. doi:10.1093/mnras/stt1638

    Article  ADS  Google Scholar 

  • McAlpine K, Prandoni I, Jarvis M, Seymour N, Padovani P, Best P, Simpson C, Guidetti D et al. (2015) The SKA view of the interplay between SF and AGN activity and its role in galaxy evolution. Adv Astrophys Sq Km Array (AASKA14) 83:1137

  • Mac Low M-M (2013) From gas to stars over cosmic time. Science 340:1229229. doi:10.1126/science.1229229

    Article  Google Scholar 

  • Madau P, Dickinson M (2014) Cosmic star-formation history. Annu Rev Astron Astrophys 52:415–486. doi:10.1146/annurev-astro-081811-125615

    Article  ADS  Google Scholar 

  • Mahony EK, Sadler EM, Croom SM, Ekers RD, Bannister KW, Chhetri R, Hancock PJ, Johnston HM et al (2011) Optical properties of high-frequency radio sources from the Australia telescope 20 GHz (AT20G) survey. MNRAS 417:2651–2675. doi:10.1111/j.1365-2966.2011.19427.x

    Article  ADS  Google Scholar 

  • Maini A, Prandoni I, Norris RP, Giovannini G, Spitler LR (2016) Compact radio cores in radio-quiet active galactic nuclei. Astron Astrophys 589:L3. doi:10.1051/0004-6361/201628305

    Article  ADS  Google Scholar 

  • Malizia A, Molina M, Bassani L, Stephen JB, Bazzano A, Ubertini P, Bird AJ (2014) The INTEGRAL high-energy cut-off distribution of type 1 active galactic nuclei. Astrophys J Lett 782:L25. doi:10.1088/2041-8205/782/2/L25

    Article  ADS  Google Scholar 

  • Mao MY, Sharp R, Norris RP, Hopkins AM, Seymour N, Lovell JEJ, Middelberg E, Randall KE et al (2012) The Australia telescope large area survey: spectroscopic catalogue and radio luminosity functions. MNRAS 426:3334–3348. doi:10.1111/j.1365-2966.2012.21913.x

    Article  ADS  Google Scholar 

  • Massardi M, Ekers RD, Murphy T, Mahony E, Hancock PJ, Chhetri R, de Zotti G, Sadler EM et al (2011) The australia telescope 20 GHz (AT20G) survey: analysis of the extragalactic source sample. MNRAS 412:318–330. doi:10.1111/j.1365-2966.2010.17917.x

    Article  ADS  Google Scholar 

  • Mauch T, Sadler EM (2007) Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN. MNRAS 375:931–950. doi:10.1111/j.1365-2966.2006.11353.x

    Article  ADS  Google Scholar 

  • Merloni A, Heinz S (2013) Evolution of active galactic nuclei. planets, stars and stellar systems. Extragalactic Astron Cosmol 6:503–566. doi:10.1007/978-94-007-5609-0_11

    Google Scholar 

  • Middelberg E, Deller A, Morgan J, Rottmann H, Alef W, Tingay S, Norris R, Bach U et al (2011) Wide-field VLBA observations of the Chandra deep field South. Astron Astrophys 526:A74. doi:10.1051/0004-6361/201015406

    Article  ADS  Google Scholar 

  • Miley G, De Breuck C (2008) Distant radio galaxies and their environments. Astron Astrophys Rev 15:67–144. doi:10.1007/s00159-007-0008-z

    Article  ADS  Google Scholar 

  • Miller P, Rawlings S, Saunders R (1993) The radio and optical properties of the \(z < 0.5\) BQS quasars. MNRAS 263:425–460. doi:10.1093/mnras/263.2.425

    Article  ADS  Google Scholar 

  • Miller NA, Bonzini M, Fomalont EB, Kellermann KI, Mainieri V, Padovani P, Rosati P, Tozzi P et al (2013) The very large array 1.4 GHz survey of the extended Chandra deep field South: second data release. Astrophys J Suppl 205:13. doi:10.1088/0067-0049/205/2/13

  • Mills BY, Slee OB, Hill ER (1958) A catalogue of radio sources between declinations \(+\)10 deg and \(-\)20 deg. Aust J Phys 11:360–387. doi:10.1071/PH580360

    Article  ADS  Google Scholar 

  • Morganti R, Rottgering H, Snellen I, Miley G, Barthel P, Best P, Bruggen M, Brunetti G et al. (2010) Continuum surveys with LOFAR and synergy with future large surveys in the 1–2 GHz band. In: Panoramic radio astronomy: wide-field 1-2 GHz research on galaxy evolution. Gröningen, The Netherlands. http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=89,40. (Published online) arXiv:1001.2384

  • Morić I, Smolčić V, Kimball A, Riechers DA, Ivezić Ž, Scoville N (2010) A closer view of the radio-FIR correlation: disentangling the contributions of star formation and active galactic nucleus activity. Astrophys J 724:779–790. doi:10.1088/0004-637X/724/1/779

    Article  ADS  Google Scholar 

  • Moshir M, Kopman G, Conrow TAO (eds) (1992) IRAS faint source survey, explanatory supplement version 2. Pasadena: infrared processing and analysis center, California Institute of Technology

  • Nakagawa T, Shibai H, Onaka T, Matsuhara H, Kaneda H, Kawakatsu Y (2015) The next-generation infrared astronomy mission SPICA under the new framework. Publ Korean Astron Soc 30:621–624. doi:10.5303/PKAS.2015.30.2.621

    ADS  Google Scholar 

  • Netzer H (2015) Revisiting the unified model of active galactic nuclei. Annu Rev Astron Astrophys 53:365–408. doi:10.1146/annurev-astro-082214-122302

    Article  ADS  Google Scholar 

  • Noeske KG, Weiner BJ, Faber SM, Papovich C, Koo DC, Somerville RS, Bundy K, Conselice CJ et al (2007) Star formation in AEGIS field galaxies Since z\(=\)1.1: the dominance of gradually declining star formation, and the main sequence of star-forming galaxies. Astrophys J Lett 660:L43–L46. doi:10.1086/517926

    Article  ADS  Google Scholar 

  • Norris RP, Hopkins AM, Afonso J, Brown S, Condon JJ, Dunne L, Feain I, Hollow R et al (2011) EMU: evolutionary map of the universe. Publ Astron Soc Aust 28:215–248. doi:10.1071/AS11021

    Article  ADS  Google Scholar 

  • Norris RP, Afonso J, Bacon D, Beck R, Bell M, Beswick RJ, Best P, Bhatnagar S et al (2013) Radio continuum surveys with square kilometre array pathfinders. Publ Astron Soc Aust 30:e020. doi:10.1017/pas.2012.020

    Article  ADS  Google Scholar 

  • Nyland K, Young LM, Wrobel JM, Sarzi M, Morganti R, Alatalo K, Blitz L, Bournaud F et al (2016) The ATLAS\(^{\rm 3D}\) project—XXXI. Nuclear radio emission in nearby early-type galaxies. MNRAS 458:2221–2268. doi:10.1093/mnras/stw391

    Article  ADS  Google Scholar 

  • O’Dea CP (1998) The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ Astron Soc Pac 110:493–532. doi:10.1086/316162

    Article  ADS  Google Scholar 

  • Ogle P, Whysong D, Antonucci R (2006) Spitzer reveals hidden quasar nuclei in some powerful FR II radio galaxies. Astrophys J 647:161–171. doi:10.1086/505337

    Article  ADS  Google Scholar 

  • Orienti M, D’Ammando F, Giroletti M, Giovannini G, Panessa F (2015) The physics of the radio emission in the quiet side of the AGN population with the SKA. Adv Astrophys Sq Km Array (AASKA14) 87:1201

  • Orr MJL, Browne IWA (1982) Relativistic beaming and quasar statistics. MNRAS 200:1067–1080. doi:10.1093/mnras/200.4.1067

    Article  ADS  Google Scholar 

  • Owen FN, Morrison GE (2008) The deep swire field. I. 20 cm continuum radio observations: a crowded sky. Astronom J 136:1889–1900. doi:10.1088/0004-6256/136/5/1889

    Article  ADS  Google Scholar 

  • Padovani P (1993) The radio loud fraction of QSOS and its dependence on magnitude and redshift. MNRAS 263:461. doi:10.1093/mnras/263.2.461

    Article  ADS  Google Scholar 

  • Padovani P, Giommi P, Landt H, Perlman ES (2007) The deep X-ray radio blazar survey. III. Radio number counts, evolutionary properties, and luminosity function of blazars. Astrophys J 662:182–198. doi:10.1086/516815

    Article  ADS  Google Scholar 

  • Padovani P, Mainieri V, Tozzi P, Kellermann KI, Fomalont EB, Miller N, Rosati P, Shaver P et al (2009) The very large array survey of the Chandra deep field south. IV. Source population. Astrophys J 694:235–246. doi:10.1088/0004-637X/694/1/235

    Article  ADS  Google Scholar 

  • Padovani P (2011) The microjansky and nanojansky radio sky: source population and multiwavelength properties. MNRAS 411:1547–1561. doi:10.1111/j.1365-2966.2010.17789.x

    Article  ADS  Google Scholar 

  • Padovani P, Miller N, Kellermann KI, Mainieri V, Rosati P, Tozzi P (2011) The VLA survey of Chandra deep field south. V. Evolution and luminosity functions of sub-millijansky radio sources and the issue of radio emission in radio-quiet active galactic nuclei. Astrophys J 740:20. doi:10.1088/0004-637X/740/1/20

    Article  ADS  Google Scholar 

  • Padovani P, Bonzini M, Kellermann KI, Miller N, Mainieri V, Tozzi P (2015a) Radio-faint AGN: a tale of two populations. MNRAS 452:1263–1279. doi:10.1093/mnras/stv1375

    Article  ADS  Google Scholar 

  • Padovani P, Petropoulou M, Giommi P, Resconi E (2015b) A simplified view of blazars: the neutrino background. MNRAS 452:1877–1887. doi:10.1093/mnras/stv1467

    Article  ADS  Google Scholar 

  • Padovani P, Resconi E, Giommi P, Arsioli B, Chang YL (2016) Extreme blazars as counterparts of IceCube astrophysical neutrinos. MNRAS 457:3582–3592. doi:10.1093/mnras/stw228

    Article  ADS  Google Scholar 

  • Panessa F, Giroletti M (2013) Sub-parsec radio cores in nearby Seyfert galaxies. MNRAS 432:1138–1143. doi:10.1093/mnras/stt547

    Article  ADS  Google Scholar 

  • Peng Y-J, Lilly SJ, Renzini A, Carollo M (2012) Mass and environment as drivers of galaxy evolution. II. The quenching of satellite galaxies as the origin of environmental effects. Astrophys J 757:4. doi:10.1088/0004-637X/757/1/4

    Article  ADS  Google Scholar 

  • Phillips MM, Jenkins CR, Dopita MA, Sadler EM, Binette L (1986) Ionized gas in elliptical and S0 galaxies. I—a survey for H-alpha and forbidden N II emission. Astronom J 91:1062–1085. doi:10.1086/114083

    Article  ADS  Google Scholar 

  • Prandoni I, Gregorini L, Parma P, de Ruiter HR, Vettolani G, Wieringa MH, Ekers RD (2001) The ATESP radio survey. III. Source counts. Astron Astrophys 365:392–399. doi:10.1051/0004-6361:20000142

    Article  ADS  Google Scholar 

  • Prandoni I, Seymour N (2015) Revealing the physics and evolution of galaxies and galaxy clusters with SKA continuum surveys. Adv Astrophys Sq Km Array (AASKA14) 67:991

  • Raginski I, Laor A (2016) AGN coronal emission models—I. The predicted radio emission. MNRAS 459:2082–2096. doi:10.1093/mnras/stw772

    Article  ADS  Google Scholar 

  • Renzini A, Peng Y-J (2015) An objective definition for the main sequence of star-forming galaxies. Astrophys J Lett 801:L29. doi:10.1088/2041-8205/801/2/L29

    Article  ADS  Google Scholar 

  • Richards AMS, Muxlow TWB, Beswick R, Allen MG, Benson K, Dickson RC, Garrett MA, Garrington ST et al (2007) Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region. Astron Astrophys 472:805–822. doi:10.1051/0004-6361:20077598

    Article  ADS  Google Scholar 

  • Rigby EE, Argyle J, Best PN, Rosario D, Röttgering HJA (2015) Cosmic downsizing of powerful radio galaxies to low radio luminosities. Astron Astrophys 581:A96. doi:10.1051/0004-6361/201526475

    Article  ADS  Google Scholar 

  • Riseley CJ, Scaife AMM, Hales CA, Harrison I, Birkinshaw M, Battye RA, Beswick RJ, Brown ML et al (2016) Deep observations of the Super-CLASS supercluster at 325 MHz with the GMRT: the low-frequency source catalogue. MNRAS 462:917–940. doi:10.1093/mnras/stw1734

  • Rosario DJ, Burtscher L, Davies R, Genzel R, Lutz D, Tacconi LJ (2013) The mid-infrared emission of narrow-line active galactic nuclei: star formation, nuclear activity, and two populations revealed by Wise. Astrophys J 778:94. doi:10.1088/0004-637X/778/2/94

  • Rowan-Robinson M, Benn CR, Lawrence A, McMahon RG, Broadhurst TJ (1993) The evolution of faint radio sources. MNRAS 263:123–130. doi:10.1093/mnras/263.1.123

    Article  ADS  Google Scholar 

  • Rybicki GB, Lightman AP (2004) Radiative processes in astrophysics. WILEY-VCH Verlag GmbH & Co, New York, pp 186–190. doi:10.1002/9783527618170

  • Ryle M, Scheuer PAG (1955) The spatial distribution and the nature of radio stars. Proc R Soc Lond Ser A 230:448–462. doi:10.1098/rspa.1955.0146

    Article  ADS  Google Scholar 

  • Sadler EM, Jenkins CR, Kotanyi CG (1989) Low-luminosity radio sources in early-type galaxies. MNRAS 240:591–635

    Article  ADS  Google Scholar 

  • Sadler EM, Jackson CA, Cannon RD, McIntyre VJ, Murphy T, Bland-Hawthorn J, Bridges T, Cole S et al (2002) Radio sources in the 2dF galaxy redshift survey - II. Local radio luminosity functions for AGN and star-forming galaxies at 1.4 GHz. MNRAS 329:227–245. doi:10.1046/j.1365-8711.2002.04998.x

    Article  ADS  Google Scholar 

  • Sadler EM, Ekers RD, Mahony EK, Mauch T, Murphy T (2014) The local radio-galaxy population at 20 GHz. MNRAS 438:796–824. doi:10.1093/mnras/stt2239

    Article  ADS  Google Scholar 

  • Sadler EM (2016) GPS/CSS radio sources and their relation to other AGN. Astron Nachr 337:105–113. doi:10.1002/asna.201512274

    Article  ADS  Google Scholar 

  • Sandage A (1965) The existence of a major new constituent of the universe: the quasistellar galaxies. Astrophys J 141:1560–1579. doi:10.1086/148245

    Article  ADS  Google Scholar 

  • Santos M, Bull P, Alonso D, Camera S, Ferreira P, Bernardi G, Maartens R, Viel M, et al. (2015) Cosmology from a SKA HI intensity mapping survey. Adv Astrophys Sq Km Array (AASKA14) 19:1315

  • Sargent MT, Schinnerer E, Murphy E, Aussel H, Le Floc’h E, Frayer DT, Martínez-Sansigre A, Oesch P et al (2010) The VLA-COSMOS perspective on the infrared-radio relation. I. New constraints on selection biases and the non-evolution of the infrared/radio properties of star-forming and active galactic nucleus galaxies at intermediate and high redshift. Astrophys J Suppl 186:341–377. doi:10.1088/0067-0049/186/2/341

    Article  ADS  Google Scholar 

  • Scheuer PAG (1957) A statistical method for analysing observations of faint radio stars. Proc Camb Philos Soc 53:764–773. doi:10.1017/S0305004100032825

    Article  ADS  MathSciNet  Google Scholar 

  • Schmidt M (1963) 3C 273: a star-like object with large red-shift. Nature 197:1040. doi:10.1038/1971040a0

    Article  ADS  Google Scholar 

  • Schmidt M (1968) Space distribution and luminosity functions of quasi-stellar radio sources. Astrophys J 151:393–409. doi:10.1086/149446

    Article  ADS  Google Scholar 

  • Schmidt M (1970) Space distribution and luminosity functions of quasars. Astrophys J 162:371–379. doi:10.1086/150668

    Article  ADS  Google Scholar 

  • Seiffert M, Fixsen DJ, Kogut A, Levin SM, Limon M, Lubin PM, Mirel P, Singal J et al (2011) Interpretation of the ARCADE 2 absolute sky brightness measurement. Astrophys J 734:6. doi:10.1088/0004-637X/734/1/6

    Article  ADS  Google Scholar 

  • Seymour N, Dwelly T, Moss D, McHardy I, Zoghbi A, Rieke G, Page M, Hopkins A et al (2008) The star formation history of the Universe as revealed by deep radio observations. MNRAS 386:1695–1708. doi:10.1111/j.1365-2966.2008.13166.x

    Article  ADS  Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355

    ADS  Google Scholar 

  • Shen Y, Ho LC (2014) The diversity of quasars unified by accretion and orientation. Nature 513:210–213. doi:10.1038/nature13712

    Article  ADS  Google Scholar 

  • Simpson C, Martínez-Sansigre A, Rawlings S, Ivison R, Akiyama M, Sekiguchi K, Takata T, Ueda Y et al (2006) Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-\(\mu \)Jy catalogue, optical identifications, and the nature of the faint radio source population. MNRAS 372:741–757. doi:10.1111/j.1365-2966.2006.10907.x

    Article  ADS  Google Scholar 

  • Simpson C, Rawlings S, Ivison R, Akiyama M, Almaini O, Bradshaw E, Chapman S, Chuter R et al (2012) Radio imaging of the Subaru/XMM-Newton deep field- III. Evolution of the radio luminosity function beyond z \(=\) 1. MNRAS 421:3060–3083. doi:10.1111/j.1365-2966.2012.20529.x

    Article  ADS  Google Scholar 

  • Smith KL, Koss M, Mushotzky RF (2014) An infrared and optical analysis of a sample of XBONGs and optically elusive AGNs. Astrophys J 794:112. doi:10.1088/0004-637X/794/2/112

    Article  ADS  Google Scholar 

  • Smolčić V, Schinnerer E, Zamorani G, Bell EF, Bondi M, Carilli CL, Ciliegi P, Mobasher B et al (2009a) The dust-unbiased cosmic star-formation history from the 20 CM VLA-COSMOS survey. Astrophys J 690:610–618. doi:10.1088/0004-637X/690/1/610

    Article  ADS  Google Scholar 

  • Smolčić V, Zamorani G, Schinnerer E, Bardelli S, Bondi M, Bîrzan L, Carilli CL, Ciliegi P et al (2009b) Cosmic Evolution of radio selected active galactic nuclei in the cosmos field. Astrophys J 696:24–39. doi:10.1088/0004-637X/696/1/24

    Article  ADS  Google Scholar 

  • Smolčić V, Padovani P, Delhaize J, Prandoni I, Seymour N, Jarvis M, Afonso J, Magliocchetti M, et al. (2015) Exploring AGN activity over cosmic time with the SKA. Adv Astrophys Sq Km Array (AASKA14) 69:1027

  • Somerville RS, Davé R (2015) Physical models of galaxy formation in a cosmological framework. Annu Rev Astron Astr 53:51–113. doi:10.1146/annurev-astro-082812-140951

    Article  ADS  Google Scholar 

  • Sopp HM, Alexander P (1991) A composite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars. MNRAS 251:14P–16P. doi:10.1093/mnras/251.1.14P

    Article  ADS  Google Scholar 

  • Sulentic J, Marziani P, Zamfir S (2011) The case for two quasar populations. Balt Astron 20:427–434

    ADS  Google Scholar 

  • Sullivan WT (1984) The early years of radio astronomy: reflections fifty years after Jansky’s discovery. Cambridge University Press, Cambridge, pp 146–165 and pp 365–384

  • Symeonidis M, Willner SP, Rigopoulou D, Huang J-S, Fazio GG, Jarvis MJ (2008) The properties of 70 \(\mu \)m-selected high-redshift galaxies in the extended groth strip. MNRAS 385:1015–1028. doi:10.1111/j.1365-2966.2008.12899.x

    Article  ADS  Google Scholar 

  • Szokoly GP, Bergeron J, Hasinger G, Lehmann I, Kewley L, Mainieri V, Nonino M, Rosati P et al (2004) The Chandra deep field-south: optical spectroscopy I. Astrophys J Suppl 155:271–349. doi:10.1086/424707

    Article  ADS  Google Scholar 

  • Tadhunter C (2016) Radio AGN in the local universe: unification, triggering and evolution. Astron Astrophys Rev 24:10. doi:10.1007/s00159-016-0094-x

    Article  ADS  Google Scholar 

  • Taylor EN, Franx M, van Dokkum PG, Bell EF, Brammer GB, Rudnick G, Wuyts S, Gawiser E et al (2009) The rise of massive red galaxies: the color-magnitude and color-stellar mass diagrams for \(z_{\rm phot} \lesssim 2\) from the multiwavelength survey by Yale-Chile. Astrophys J 694:1171–1199. doi:10.1088/0004-637X/694/2/1171

    Article  ADS  Google Scholar 

  • Thean A, Pedlar A, Kukula MJ, Baum SA, O’Dea CP (2001) High-resolution radio observations of Seyfert galaxies in the extended 12-\(\mu \)m sample - II. The properties of compact radio components. MNRAS 325:737–760. doi:10.1046/j.1365-8711.2001.04485.x

    Article  ADS  Google Scholar 

  • Ulvestad JS, Antonucci RRJ, Barvainis R (2005) VLBA imaging of central engines in radio-quiet quasars. Astrophys J 621:123–129. doi:10.1086/427426

    Article  ADS  Google Scholar 

  • Urry CM, Padovani P (1995) Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pac 107:803–845. doi:10.1086/133630

    Article  ADS  Google Scholar 

  • van Velzen S, Falcke H, Schellart P, Nierstenhöfer N, Kampert K-H (2012) Radio galaxies of the local universe. All-sky catalog, luminosity functions, and clustering. Astron Astrophys 544:A18. doi:10.1051/0004-6361/201219389

    Article  ADS  Google Scholar 

  • van Weeren RJ, Williams WL, Tasse C, Röttgering HJA, Rafferty DA, van der Tol S, Heald G, White GJ et al (2014) LOFAR low-band antenna observations of the 3C 295 and Boötes fields: source counts and ultra-steep spectrum sources. Astrophys J 793:82. doi:10.1088/0004-637X/793/2/82

    Article  ADS  Google Scholar 

  • Vattakunnel S, Tozzi P, Matteucci F, Padovani P, Miller N, Bonzini M, Mainieri V, Paolillo M et al (2012) The radio-X-ray relation as a star formation indicator: results from the very large array-extended Chandra deep field-south. MNRAS 420:2190–2208. doi:10.1111/j.1365-2966.2011.20185.x

    Article  ADS  Google Scholar 

  • Vernstrom T, Scott D, Wall JV, Condon JJ, Cotton WD, Fomalont EB, Kellermann KI, Miller N et al (2014) Deep 3 GHz number counts from a P(D) fluctuation analysis. MNRAS 440:2791–2809. doi:10.1093/mnras/stu470

    Article  ADS  Google Scholar 

  • Vernstrom T, Norris RP, Scott D, Wall JV (2015) The deep diffuse extragalactic radio sky at 1.75 GHz. MNRAS 447:2243–2260. doi:10.1093/mnras/stu2595

    Article  ADS  Google Scholar 

  • Vernstrom T, Scott D, Wall J, Condon J, Cotton B, Kellermann K, Perley R (2016) Deep 3-GHz observations of the Lockman Hole North with the Very Large Array—II. Catalogue and \(\mu \)Jy source properties. MNRAS 462:2934–2949. doi:10.1093/mnras/stw1836

    Article  ADS  Google Scholar 

  • Wall JV, Jackson CA, Shaver PA, Hook IM, Kellermann KI (2005) The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs. Astron Astrophys 434:133–148. doi:10.1051/0004-6361:20041786

    Article  ADS  Google Scholar 

  • Weiß A, De Breuck C, Marrone DP, Vieira JD, Aguirre JE, Aird KA, Aravena M, Ashby MLN et al (2013) ALMA redshifts of millimeter-selected galaxies from the SPT survey: the redshift distribution of dusty star-forming galaxies. Astrophys J 767:88. doi:10.1088/0004-637X/767/1/88

    Article  ADS  Google Scholar 

  • Whittam IH, Riley JM, Green DA, Jarvis MJ, Vaccari M (2015) The faint radio source population at 15.7 GHz - II. Multi-wavelength properties. MNRAS 453:4244–4263. doi:10.1093/mnras/stv1901

    Article  ADS  Google Scholar 

  • Whittam IH, Riley JM, Green DA, Davies ML, Franzen TMO, Rumsey C, Schammel MP, Waldram EM et al (2016) 10C continued: a deeper radio survey at 15.7 GHz. MNRAS 457:1496–1506. doi:10.1093/mnras/stv2960

    Article  ADS  Google Scholar 

  • Williams WL, van Weeren RJ, Röttgering HJA, Best P, Dijkema TJ, de Gasperin F, Hardcastle MJ, Heald G et al (2016) LOFAR 150-MHz observations of the Boötes field: catalogue and source counts. MNRAS 460:2385–2412. doi:10.1093/mnras/stw1056

    Article  ADS  Google Scholar 

  • Wilman RJ, Miller L, Jarvis MJ, Mauch T, Levrier F, Abdalla FB, Rawlings S, Klöckner H-R et al (2008) A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. MNRAS 388:1335–1348. doi:10.1111/j.1365-2966.2008.13486.x

    ADS  Google Scholar 

  • Wilman RJ, Jarvis MJ, Mauch T, Rawlings S, Hickey S (2010) An infrared-radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel. MNRAS 405:447–461. doi:10.1111/j.1365-2966.2010.16453.x

    ADS  Google Scholar 

  • Wilson AS, Colbert EJM (1995) The difference between radio-loud and radio-quiet active galaxies. Astrophys J 438:62–71. doi:10.1086/175054

    Article  ADS  Google Scholar 

  • Windhorst RA, van Heerde GM, Katgert P (1984) A deep Westerbork survey of areas with multicolor Mayall 4 M plates. I—the 1412 MHz catalogue, source counts and angular size statistics. Astron Astrophys Suppl 58:1–37

    ADS  Google Scholar 

  • Windhorst RA, Miley GK, Owen FN, Kron RG, Koo DC (1985) Sub-millijansky 1.4 GHz source counts and multicolor studies of weak radio galaxy populations. Astrophys J 289:494–513. doi:10.1086/162911

    Article  ADS  Google Scholar 

  • Windhorst RA, Cohen SH, Hathi NP, McCarthy PJ, Ryan RE, Jr., Yan H, Baldry IK, Driver SP, et al. (2011) The Hubble space telescope wide field camera 3 early release science data: panchromatic faint object counts for \(0.2-2 \mu \)m wavelength. Astrophys J Suppl 193: 27. doi:10.1088/0067-0049/193/2/27

  • Yuan Z, Wang J, Zhou M, Mao J (2016) A mixture evolution scenario of the AGN radio luminosity function. Astrophys J 820:65. doi:10.3847/0004-637X/820/1/65

    Article  ADS  Google Scholar 

  • Zakamska NL, Lampayan K, Petric A, Dicken D, Greene JE, Heckman TM, Hickox RC, Ho LC et al (2016) Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. MNRAS 455:4191–4211. doi:10.1093/mnras/stv2571

    Article  ADS  Google Scholar 

  • Zamfir S, Sulentic JW, Marziani P (2008) New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space. MNRAS 387:856–870. doi:10.1111/j.1365-2966.2008.13290.x

    Article  ADS  Google Scholar 

  • Zirbel EL, Baum SA (1995) On the FR I/FR II dichotomy in powerful radio sources: analysis of their emission-line and radio luminosities. Astrophys J 448:521–547. doi:10.1086/175984

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Roberto Assef, Angela Bongiorno, Alessandro Capetti, Renato Falomo, Lui-gina Feretti, Roberto Gilli, Paolo Giommi, Chris Hales, Evanthia Hatziminaoglou, Darshan Kakkad, Robert Laing, Vincenzo Mainieri, Arne Rau, Gordon Richards, an anonymous referee, and particularly Ken Kellermann, for helpful comments and discussions, and the rest of the E-CDFS team, especially Margherita Bonzini, Neal Miller, and Paolo Tozzi, for the work done together over the past few years. Isabella Prandoni kindly provided me with most of the data points in Fig. 4 and the simulated number counts from the SKADS. I also greatly benefited from the NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Padovani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovani, P. The faint radio sky: radio astronomy becomes mainstream. Astron Astrophys Rev 24, 13 (2016). https://doi.org/10.1007/s00159-016-0098-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-016-0098-6

Keywords

Navigation