Skip to main content
Log in

Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A thermomechanical model for a shape memory alloy (SMA) wire under uniaxial loading is implemented in a finite element framework, and simulation results are compared with mechanical and infrared experimental data. The constitutive model is a one–dimensional strain-gradient continuum model of an SMA wire element, including two internal field variables, possible unstable mechanical behavior, and the relevant thermomechanical couplings resulting from latent heat effects. The model is calibrated to recent and new experiments of typical commercially available polycrystalline NiTi wire. The shape memory effect and pseudoelastic behaviors are demonstrated numerically as a function of applied displacement rate and environmental parameters, and the results compare favorably to experimental data. The model is then used to simulate a simple SMA actuator device, and its performance is assessed for different thermal boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Knowles J.K. (1993). A continuum model of a thermoelastic solid capable of undergoing phase transitions. J. Mech. Phys. Solids 41:541–571

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahluwalia R., Lookman T., Saxena A., Albers R. (2004). Landau theory for shape memory polycrystals. Acta Mater. 52:209–218

    Article  Google Scholar 

  3. Anand L., Gurtin M.E. (2003). Thermal effects in the superelasticity of crystalline shape-memory materials. J. Mech. Phys. Solids 51(6):1015–1058

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardini D., Pence T.J. (2002a). Models for one-variant shape memory materials based on dissipation functions. Int. J. Nonlin. Mech. 37:1299–1317

    Article  MATH  Google Scholar 

  5. Bernardini D., Pence T.J. (2002b). Shape-memory materials, modeling. In: Schwartz M. (eds) Encyclopedia of Smart Materials, vol. 2. Wiley, New York, pp. 964–979

    Google Scholar 

  6. Bondaryev, E.N., Wayman, C.M.: Some stress–strain-temperature relationships for shape memory alloys. Metallurg. Trans. A 19A (1988)

  7. Brinson L.C., Schmidt I., Lammering R. (2004). Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J. Mech. Phys. Solids 52(7):1549–1571

    Article  MATH  Google Scholar 

  8. Chang, B.-C.: Thermodynamics of shape memory alloy wire: modeling, experimental calibration, and simulation. PhD Thesis, University of Michigan (2005)

  9. Coleman B.D., Gurtin M.E. (1967). Thermodynamics with internal state variables. J. Chem. Phys. 47(2):597–613

    Article  Google Scholar 

  10. Coleman B.D., Noll N. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13(1):167–178

    Article  MATH  MathSciNet  Google Scholar 

  11. Duerig T.W., Melton K.N., Stöckel D., Wayman C.M. (1990). (eds) Engineering Aspects of Ahape Memory Alloys. Butterworth-Heinemann, Boston

    Google Scholar 

  12. Elliott R., Shaw J.A., Triantafyllidis N. (2006). Stability of crystalline solids – II: application to temperature-induced martensitic phase transformations in a bi-atomic crystal. J. Mech. Phys. Solids 54:193–232

    Article  MathSciNet  MATH  Google Scholar 

  13. Ericksen J.L. (1991). Introduction to the Thermodynamics of Solids. Chapman and Hall, New York

    MATH  Google Scholar 

  14. Gall K., Sehitoglu H. (1999). The role of texture in tension-compression asymmetry in polycrystalline NiTi. Int. J. Plast. 15:69–92

    Article  MATH  Google Scholar 

  15. Gall K., Tyber J., Brice V., Frick C., Maier H., Morgan H. (2005). Tensile deformation of NiTi wire. J. Biomed. Mater. Res. A 810–823

  16. Hall G., Govindjee S. (2002). Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution. J. Mech. Phys. Solids 50:501–530

    Article  MATH  MathSciNet  Google Scholar 

  17. Heintze, O.: A computationally efficient free energy model for shape memory alloys – experiments and theory. PhD thesis, North Carolina State University (2004)

  18. Huang X., Ackland G., Rabe K. (2003). Crystal structures and shape-memory behaviour of NiTi. Nat. Mater. Lett. 2:307–311

    Article  Google Scholar 

  19. Iadicola M.A., Shaw J.A. (2002a). The effect of uniaxial cyclic deformation on the evolution of phase transformation fronts in pseudoelastic NiTi wire. J. Intell. Mater. Syst. Struct. 13(2):143–156

    Article  Google Scholar 

  20. Iadicola M.A., Shaw J.A. (2002b). An experimental setup for measuring unstable thermo–mechanical behavior of shape memory alloy wire. J. Intell. Mater. Syst. Struct. 13(2):157–166

    Article  Google Scholar 

  21. Iadicola M.A., Shaw J.A. (2004). Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int. J. Plast. 20:577–605

    Article  MATH  Google Scholar 

  22. Iadicola, M.A., Shaw, J.A.: An experimental method to measure initiation events during unstable stress–induced martensitic transformation in a shape memory alloy wire. Smart Mater. Struct. (in press) 2006

  23. Idesman A., Levitas V.I., Preston D., Cho J.-Y. (2005). Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model. J. Mech. Phys. Solids 53:495–523

    Article  MathSciNet  MATH  Google Scholar 

  24. Ivshin Y., Pence T.J. (1994). A thermomechanical model for a one variant shape memory material. J. Intell. Mater. Syst. Struct. 5:455–473

    Google Scholar 

  25. Kennedy D.K., Straub F.K., Schetky L.M., Chaudhry Z., Roznoy R. (2004). Development of an SMA actuator for in-flight rotor blade tracking. J. Intell. Mater. Syst. Struct. 15:235–248

    Article  Google Scholar 

  26. Leo P.H., Shield T.W., Bruno O.P. (1993). Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metallurg. Mater. 41:2477–2485

    Article  Google Scholar 

  27. Li Z.Q., Sun Q.P. (2002). The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plast. 18(11):1481–1498

    Article  MathSciNet  Google Scholar 

  28. Lim T.J., McDowell D.L. (2002). Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy. J. Mech. Phys. Solids 50(3):651–676

    Article  MATH  Google Scholar 

  29. Liu Y., Liu Y., Van Humbeeck J. (1998). Lüders-like deformation associated with martensite reorientation in NiTi. Scr. Mater. 39(8):1047–1055

    Article  Google Scholar 

  30. Mindlin R.D. (1965). Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1:417–438

    Article  Google Scholar 

  31. Miyazaki S., Otsuka K., Suzuki Y. (1981). Transformation pseudoelasticity and deformation behavior in a Ti 50.6 at % Ni alloy. Scr. Metallurg. 15:287–292

    Article  Google Scholar 

  32. Müller I., Seelecke S. (2001). Thermodynamic aspects of shape memory alloys. Math. Comput. Model 34(12–13):1307–1355

    Article  MATH  Google Scholar 

  33. Ng K.L., Sun Q.P. (2006). Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes. Mech. Mater. 38:41–56

    Article  Google Scholar 

  34. Otsuka K., Ren X. (2005). Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50:511–678

    Article  Google Scholar 

  35. Otsuka K., Wayman C.M. (eds) (1998). Shape Memory Materials. Cambridge University Press, Cambridge

    Google Scholar 

  36. Pitt, D., Dunne, J. White, E., Garcia, E.: Wind tunnel demonstration of the sampson smart inlet. In: Proceedings of SPIE, Smart Structures and Materials, pp. 345–356 (2001)

  37. Raphanel J.L., Ravichandran G., Leroy Y.M. (2004). Three-dimensional rate-dependent crystal plasticity based on Runge–Kutta algorithms for update and consistent linearization. IJSS 41:5995–6021

    MATH  Google Scholar 

  38. Rey, N., Tillman, G., Miller, R., Wynosky, T., Larkin, M., Flamm, J., Bangert, L.: Shape memory alloy actuation for a variable area fan nozzle. In: Proceedings of SPIE, Smart Structures and Materials pp. 371–382 (2001)

  39. Sanders B., Cowan D., Scherer L. (2004). Aerodynamic performance of the smart wing control effectors. J. Intell. Mater. Syst. Struct. 15:293–303

    Article  Google Scholar 

  40. SARPP: User manual. École Polytechnique (LMS) and the University of Michigan (Aerospace Engineering), 2.0 edn. (2001)

  41. Schwartz M. (2002). Encyclopedia of Smart Materials vol 1. Wiley, New York

    Google Scholar 

  42. Shaw J.A., Kyriakides S. (1995). Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8):1243–1281

    Article  Google Scholar 

  43. Shaw J.A., Kyriakides S. (1997). On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45(2):683–700

    Article  Google Scholar 

  44. Shaw J.A., Kyriakides S. (1998). Initiation and propagation of localized deformation in elasto–plastic strips under uniaxial tension. Int. J. Plast. 13(10):837–871

    Article  Google Scholar 

  45. Shaw J.A. (2002). A thermomechanical model for a 1–D shape memory alloy with propagating instabilities. Int. J. Solids Struct. 39(5):1275–1305

    Article  MATH  Google Scholar 

  46. Singh K., Sirohi J., Chopra I. (2003). An improved shape memory alloy actuator for rotor blade tracking. J. Intell. Mater. Syst. Struct. 14:767–786

    Article  Google Scholar 

  47. Strelec J.K., Lagoudas D.C., Khan M.A., Yen J. (2003). Design and implementation of a shape memory alloy actuated reconfigurable airfoil. J. Intell. Mater. Syst. Struct. 14:257–249

    Article  Google Scholar 

  48. Sun, Q.P., Li, Z.Q., Tse, K.K.: On superelastic deformation of NiTi shape memory alloy micro–tubes and wires – band nucleation and propagation. In: Proceedings of IUTAM Symposium on Smart Structures and Structronic Systems, Magdeburg Germany, September 26–29 (2000)

  49. Truskinovsky L., Vainchtein A. (2004). The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52(6):1421–1446

    Article  MATH  MathSciNet  Google Scholar 

  50. Wu X., Pence T.J. (1998). Two variant modeling of shape memory materials: unfolding a phase diagram triple point. J. Intell. Mater. Syst. Struct. 9:335–354

    Article  Google Scholar 

  51. Ye Y., Chan C., Ho K. (1997). Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt. Phys. Rev. B 56(7):3678–3689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Shaw.

Additional information

Communicated by S. Seelecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, BC., Shaw, J.A. & Iadicola, M.A. Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application. Continuum Mech. Thermodyn. 18, 83–118 (2006). https://doi.org/10.1007/s00161-006-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-006-0022-9

Keywords

Navigation