Skip to main content
Log in

Volume-weighted mixture theory for granular materials

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the present work we treat granular materials as mixtures composed of a solid and a surrounding void continuum, proposing then a continuum thermodynamic theory for it. In contrast to the common mass-weighted balance equations of mass, momentum, energy and entropy for mixtures, the volume-weighted balance equations and the associated jump conditions of the corresponding physical quantities are derived in terms of volume-weighted field quantities here. The evolution equations of volume fractions, volume-weighted velocity, energy, and entropy are presented and explained in detail. By virtue of the second law of thermodynamics, three dissipative mechanisms are considered which are specialized for a simple set of linear constitutive equations. The derived theory is applied to the analysis of reversible and irreversible compaction of cohesionless granular particles when a vertical oscillation is exerted on the system. In this analysis, a hypothesis for the existence of a characteristic depth within the granular material in its closely compacted state is proposed to model the reversible compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda M. and Iwashita K. (1999). Mechanics of Granular Materials. Balkema Publishers, Netherlands

    Google Scholar 

  2. Duran J. (2000). Sand, Power and Grains. Springer, Berlin

    Google Scholar 

  3. Hinrichsen H. and Wolf D.E. (2004). The Physics of Granular Media. WILEY-VCH, Weinheim

    Google Scholar 

  4. Hutter K., Svendsen B. and Rickenmann D. (1996). Debris flow modeling: a review. Contin. Mech. Thermodyn. 8: 1–35

    Article  MATH  MathSciNet  Google Scholar 

  5. Ottino J.M. and Khakhar D.V. (2000). Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32: 55–91

    Article  MathSciNet  Google Scholar 

  6. Wang Y. and Hutter K. (2001). Granular material theories revisited. In: Balmforth, N.J. and Provenzale, A. (eds) Geomorphological Fluid Mechanics., pp 79–107. Springer, Berlin

    Chapter  Google Scholar 

  7. Chang C.S. and Liao C.L. (1994). Estimate of elastic modulus for media of randomly packed granules. Appl. Mech. Rev. 47(1): 197–206

    Article  Google Scholar 

  8. Mullins W.W. (1972). Stochastic theory of particle flow under gravity. J. Appl. Phys. 43: 665–678

    Article  Google Scholar 

  9. Caram H.S. and Hong D.C. (1992). Diffusing void model for granular flow. Mod. Phys. Lett. B 6: 761–771

    Article  Google Scholar 

  10. Fried E. and Roy B.C. (2003). Gravity-induced segregation of cohensionless granular mixtures. In: Hutter, K. and Kirchner, N. (eds) Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformation. Lecture Notes in Applied and Computational Mechanics 11, pp 393–421. Springer, Berlin

    Google Scholar 

  11. Fried E., Gurtin M.E. and Hutter K. (2004). A void-based description of compaction and segregation in flowing granular materials. Contin. Mech. Thermodyn. 16: 199–219

    Article  MATH  MathSciNet  Google Scholar 

  12. Möbius M.E., Cheng X., Karczmar G.S., Nagel S.R. and Jaeger H.M. (2004). Intruders in the dust: air-driven granular size separation. Phys. Rev. Lett. 93: 198001

    Article  Google Scholar 

  13. Yan X., Shi Q., Hou M., Lu K. and Chan C.K. (2003). Effects of air on the segregation of particles in a shaken granular bed. Phys. Rev. Lett. 91: 014302

    Article  Google Scholar 

  14. Möbius M.E., Cheng X., Eshuis P., Karczmar G.S., Nagel S.R. and Jaeger H.M. (2005). Effects of air on granular size separation in a vibrated granular bed. Phys. Rev. E. 72: 011304

    Article  Google Scholar 

  15. Naylor M.A., Swift M.R. and King P.J. (2003). Air-driven Brazil nut effect. Phys. Rev. E. 68: 012301

    Article  Google Scholar 

  16. Truesdell C.A. and Toupin R.A. (1957). The classical field theories. In: S., Flügge (eds) Encyclopedia of Physics, Vol. III/1, pp 226–793. Springer, Berlin

    Google Scholar 

  17. Bowen R.M. (1976). Theory of mixtures. In: Eringen, A.C. (eds) Continuum Physics III, pp 1–127. Academic, New York

    Google Scholar 

  18. Goodman M.A. and Cowin S.C. (1972). A continuum theory for granular materials. Arch. Rational Mech. Anal. 44: 249–266

    Article  MATH  MathSciNet  Google Scholar 

  19. Vardoulakis I. and Aifantis E.C. (1991). A gradient flow theory of plasticity for granular materials. Acta Mech. 87: 197–217

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang C., Wang Y. and Hutter K. (2006). A thermo-mechanical continuum theory with internal length for cohesionless granular materials Part I. a class of constitutive models. Contin. Mech. Thermodyn. 17: 545–576

    Article  MATH  MathSciNet  Google Scholar 

  21. Ahuja A.S. (1972). Formulation of wave equation for calculating velocity of sound in suspensions. J. Acoust. Soc. Am. 51: 916–919

    Article  Google Scholar 

  22. Ahuja A.S. (1973). Wave equation and propagation parameters for sound propagation in suspensions. J. Appl. Phys. 44: 4863–4868

    Article  Google Scholar 

  23. Wilmański K. (1998). A thermodynamic model of compressible porous materials with the balance equation of porosity. Trans. Porous Media 32: 21–47

    Article  Google Scholar 

  24. Wilmański K. (1998). Thermomechanics of Continua. Springer, Berlin

    MATH  Google Scholar 

  25. Hutter K. and Jöhnk K. (2004). Continuum Methods of Physical Modeling. Springer, Berlin

    MATH  Google Scholar 

  26. Müller I. (1971). The coldness, a universal function in thermoelastic bodies. Arch. Rational Mech. Anal. 41: 319–332

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu I.-S. (1972). Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46: 131–148

    MATH  MathSciNet  Google Scholar 

  28. Nowak E.R., Knight J.B., Povinelli M.L., Jaeger H.M. and Nagel S.R. (1997). Reversibility and irreversibility in the packing of vibrated granular material. Powder Technol. 94: 79–83

    Article  Google Scholar 

  29. Chuang, W.F., Tai, Y.C., Chen, K.C.: On the reversibility in the packing of vertically vibrated granular materials. In: The 30th Conference of Theoretical and Applied Mechanics, Changhua, Taiwan, ROC, December, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ching Chen.

Additional information

Communicated by S.L. Gavrilyuk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KC., Tai, YC. Volume-weighted mixture theory for granular materials. Continuum Mech. Thermodyn. 19, 457–474 (2008). https://doi.org/10.1007/s00161-007-0064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0064-7

Keywords

PACS

Navigation