Skip to main content
Log in

Asymptotic expansions by Γ-convergence

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Our starting point is a parameterized family of functionals (a ‘theory’) for which we are interested in approximating the global minima of the energy when one of these parameters goes to zero. The goal is to develop a set of increasingly accurate asymptotic variational models allowing one to deal with the cases when this parameter is ‘small’ but finite. Since Γ-convergence may be non-uniform within the ‘theory’, we pose a problem of finding a uniform approximation. To achieve this goal we propose a method based on rectifying the singular points in the parameter space by using a blow-up argument and then asymptotically matching the approximations around such points with the regular approximation away from them. We illustrate the main ideas with physically meaningful examples covering a broad set of subjects from homogenization and dimension reduction to fracture and phase transitions. In particular, we give considerable attention to the problem of transition from discrete to continuum when the internal and external scales are not well separated, and one has to deal with the so-called ‘size’ or ‘scale’ effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G. and Müller S. (2001). A new approach to variational problems with multiple scales. Commun. Pure. Appl. Math 54: 761–825

    Article  MATH  Google Scholar 

  2. Anzellotti G. and Baldo S. (1993). Asymptotic development by Γ-convergence. Appl. Math. Optim. 27: 105–123

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold D.N., Madureira A.L. and Zhang S. (2002). On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love Plate Bending Models. J. Elast. 67: 171–185

    Article  MathSciNet  MATH  Google Scholar 

  4. Bak P. (1982). Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 45: 587–629

    Article  MathSciNet  Google Scholar 

  5. Barenblatt G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7: 55–129

    Article  MathSciNet  Google Scholar 

  6. Bazant, Z.P.: Scaling of Structural Strength, Butterworth-Heinemann p. 336 (2002)

  7. Berdichevsky, V.: Variational principles of continuum mechanics. Nauka, Moscow, (1983) (in russian) English edition. Springer, Heidelberg (in press)

  8. Bachvalov, N.S., Eglit, M.E.: Variational properties of averaged equations for periodic media. Proceedings of the Steklov Institute of Mathematics, v.3, (1992)

  9. Blanc X., Le Bris C. and Legoll F. (2005). Analysis of a prototypical multiscale method coupling atomic and continuum mechanics. M2AN 39: 797–826

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanc X., Le Bris C. and Lions P.-L. (2002). From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164: 341–381

    Article  MathSciNet  MATH  Google Scholar 

  11. Born M. and Huang Kun (1998). Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford

    Google Scholar 

  12. Bouchitté G., Fonseca I. and Mascarenhas L. (1998). A global method for relaxation. Arch. Rational Mech. Anal. 145: 51–98

    Article  MathSciNet  MATH  Google Scholar 

  13. Braides A. (1998). Approximation of free-discontinuity problems. lecture notes in mathematics 1694. Springer, Berlin

    Google Scholar 

  14. Braides A. (2002). Γ-convergence for beginners. Oxford University Press, Oxford

    MATH  Google Scholar 

  15. Braides, A.: A handbook of Γ-convergence. In: Handbook of differential equations, stationary partial differential equations, vol. 3 (Chipot M., Quittner P. eds.), Elsevier, Amsterdam (2006)

  16. Braides A. and Cicalese M. (2007). Surface energies in discrete systems. M3AS 17: 985–1037

    MathSciNet  MATH  Google Scholar 

  17. Braides A. and Chiadò Piat V. (1996). Integral representation results for functionals defined on SBV \((\Omega; \mathbb {R}^m)\). J. Math. Pures Appl. 75: 595–626

    MathSciNet  MATH  Google Scholar 

  18. Braides A. and Coscia A. (1994). The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A 124: 737–756

    MathSciNet  MATH  Google Scholar 

  19. Braides A., Dal Maso G. and Garroni A. (1999). Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146: 23–58

    Article  MathSciNet  MATH  Google Scholar 

  20. Braides A. and Defranceschi A. (1998). Homogenization of multiple integrals. Oxford University Press, Oxford

    MATH  Google Scholar 

  21. Braides A. and Gelli M.S. (2006). From discrete systems to continuous variational problems: an introduction. In: Braides, A. and Chiadò Piat, V. (eds) Topics on concentration phenomena and problems with multiple scales. Springer, Berlin

    Google Scholar 

  22. Braides A., Lew A. and Ortiz M. (2006). Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180: 151–182

    Article  MathSciNet  MATH  Google Scholar 

  23. Braides, A., Zeppieri, C.I.: Multiscale analysis for a prototypical model for the interaction between microstructure and surface energy. Interfaces free bound (in press) (2008)

  24. Chan L.Q. (2002). Phase field models for microstructural evolution. Ann. Rev. Mater. Res. 32: 113–140

    Article  Google Scholar 

  25. Charlotte M. and Truskinovsky L. (2002). Linear chains with a hyper-pre-stress. J. Mech. Phys. Solids 50: 217–251

    Article  MathSciNet  MATH  Google Scholar 

  26. Ciarlet P. (1997). Mathematical Elasticity Volume II: Theory of Plates. North-Holland, Amsterdam

    Google Scholar 

  27. Conti S. and Ortiz M. (2005). Dislocation microstructures and the effective behaior of single crystals. Arch. Ration. Mech. Anal. 176: 103–147

    Article  MathSciNet  MATH  Google Scholar 

  28. Dal Maso G. (1993). An Introduction to Γ-convergence. Birkhäuser, Boston

    Google Scholar 

  29. Dal Maso G., Negri M. and Percivale D. (2002). Linearized elasticity as Γ-limit of finite elasticity. Set Valued Anal. 10: 165–183

    Article  MathSciNet  MATH  Google Scholar 

  30. De Giorgi E. (2006). Selected papers. Springer, Berlin

    Google Scholar 

  31. De Giorgi E. and Ambrosio L. (1988). New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Math. Nat. 82(8): 199–210

    MathSciNet  MATH  Google Scholar 

  32. De Giorgi E. and Franzoni T. (1975). Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(8): 842–850

    MathSciNet  MATH  Google Scholar 

  33. Dingreville R., Qu J. and Cherkaoui M. (2005). Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids. 53: 1827–1854

    Article  MathSciNet  MATH  Google Scholar 

  34. Ericksen, J.L.: On the Cauchy Born rule, Preprint, (2007)

  35. Fedelich B. and Zanzotto G. (1992). Hysteresis in discrete systems of possibly interacting elements with a double-well energy. J. Nonlinear Sci. 2: 319–342

    Article  MathSciNet  MATH  Google Scholar 

  36. Friederichs K.O. (1955). Asymptotic phenomena in mathematical physics. Bull. Amer. Math. Soc. 61: 485–504

    Article  MathSciNet  Google Scholar 

  37. Friesecke G., James R.D. and Müller S. (2006). A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180: 183–236

    Article  MathSciNet  MATH  Google Scholar 

  38. Grabovsky Y. and Truskinovsky L. (2007). The flip side of buckling. Cont. Mech. Therm. 19: 211–243

    Article  MathSciNet  MATH  Google Scholar 

  39. Griffith A.A. (1921). The Phenomena of Rupture and Flow in Solids Phil. Trans. R. Soc. Lond. Ser. A 221: 163–198

    Article  Google Scholar 

  40. Kevorkian J. and Cole J.D. (1996). Multiple scale and singular perturbation methods in applied mathematical sciences, vol 114. Springer, Berlin, p 648

    Google Scholar 

  41. Kunin, I.A.: Elastic media with microstructure. I-One-dimensional models. In: Springer series in solid-state sciences. vol. 26, p. 299. Springer, Berlin (1982)

  42. Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory, (2007) preprint

  43. Le Khan C. (1999). Vibrations of Shells and Rods. Springer, Berlin, p 423

    Google Scholar 

  44. Lorentz E. and Andrieux S. (2003). Analysis of non-local models through energetic formulations. Int. J. Solids Struct. 40: 2905–2936

    Article  MathSciNet  MATH  Google Scholar 

  45. Marigo, J.-J., Griffith Theory Revisited. In: Multiscale modeling in continuum mechanics & structured deformations. In: Del Piero, G., Owen, D. (eds.) CISM International centre for mechanical sciences, N. 447, p. 276. Springer, Berlin (2004)

  46. Marigo J.-J. and Meunier N. (2006). Hierarchy of one-dimensional models in nonlinear elasticity. J. Elast. 83: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  47. Marigo J.J. and Truskinovsky L. (2004). Initiation and propagation of fracture in the models of Griffith and Barenblatt. Cont. Mech. Therm. 16(4): 391–409

    Article  MathSciNet  MATH  Google Scholar 

  48. Milton G.E. (2001). The theory of composites. Cambridge University Press, London

    Google Scholar 

  49. Mindlin R.D. (1965). Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1: 417–438

    Article  Google Scholar 

  50. Modica L. (1987). The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98: 123–142

    Article  MathSciNet  MATH  Google Scholar 

  51. Monneau R. (2003). Justification of the nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169: 1–34

    Article  MathSciNet  MATH  Google Scholar 

  52. Mora M.G. and Müller S. (2004). A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21: 271–293

    Article  MATH  Google Scholar 

  53. Müller S. (1993). Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Eqs. 1: 169–204

    Article  MATH  Google Scholar 

  54. Olver F.W.J. (1974). Asymptotics and special functions. Academic press, London, p 584

    Google Scholar 

  55. Pantz O. (2003). On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167: 179–209

    Article  MathSciNet  MATH  Google Scholar 

  56. Pagano S. and Paroni R. (2003). A simple model for phase transition: from the discrete to the continuum problem. Quart. Appl. Math. 61: 89–109

    MathSciNet  MATH  Google Scholar 

  57. Puglisi G. and Truskinovsky L. (2000). Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  58. Ren X. and Truskinovsky L. (2000). Finite scale microstructures in nonlocal elasticity. J. Elas. 59: 319–355

    Article  MathSciNet  MATH  Google Scholar 

  59. Rogula D. (1982). Introduction to nonlocal theory of material media. In: Rogula, D. (eds) Nonlocal theory of material media, vol. 268 of CISM Courses and Lectures, pp 123–222. Springer, Wien-New York

    Google Scholar 

  60. Schlomerkemper, A., Schmidt, B.: Discrete-to-continuum limits of magnetic forces in dependence on. the distance between bodies. Max Planck Institute for Mathematics in the Sciences, Leipzig, Preprint (2007)

  61. Smyshlyaev V.P. and Cherdnichenko K.D. (2000). On derivation of strain gradient effects in the overall behavior of periodic homogeneous media. J. Mech. Phys. Solids 48: 1325–1357

    Article  MathSciNet  MATH  Google Scholar 

  62. Sun, Q.P., Tong, P. (Eds.): Proceedings of the IUTAM Symposium on Size Effects on Material and Structural Behavior at Micron - and Nano-Scales. Solid Mechanics and Its Applications, vol. 142, p. 263, (2006)

  63. Tadmor E.B., Ortiz M. and Phillips R. (1996). Quasi-continuum analysis of defects in solids. Phil. Mag. A 73: 1529–1563

    Article  Google Scholar 

  64. Truskinovsky L. (1996). Fracture as a phase transition. In: Batra, R.C. and Beatty, M.F. (eds) Contemporary research in the mechanics and mathematics of materials, pp 322–332. CIMNE, Barcelona

    Google Scholar 

  65. Truskinovsky L. and Zanzotto G. (1996). Ericksen’s bar revisited: energy wiggles. J. Mech. Phys. Solids 44(8): 1371–1408

    Article  MathSciNet  Google Scholar 

  66. Truskinovsky L. and Vainchtein A. (2004). About the orgin of the nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52: 1421–1446

    Article  MathSciNet  MATH  Google Scholar 

  67. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Chelsea Pub Co., (1980)

  68. Vainchtein A., Healey T., Rosakis P. and Truskinovsky L. (1998). The role of the spinodal in one-dimensional phase transitions microstructures. Physica D 115: 29–48

    Article  MathSciNet  MATH  Google Scholar 

  69. Waals J.D. van der (1979). The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Reprint of an original article. J. Stat. Phys. 20: 200–244

    Article  Google Scholar 

  70. Zeppieri, C.I.: Multi-scale analysis via Γ-convergence. Dissertation, Rome. available at http://cvgmt.sns.it (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Truskinovsky.

Additional information

Communicated by L. Evans

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braides, A., Truskinovsky, L. Asymptotic expansions by Γ-convergence. Continuum Mech. Thermodyn. 20, 21–62 (2008). https://doi.org/10.1007/s00161-008-0072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0072-2

Keywords

PACS

Navigation