Skip to main content
Log in

Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Four basic flow configurations are employed to investigate steady and unsteady rarefaction effects in monatomic ideal gas flows. Internal and external flows in planar geometry, namely, viscous slip (Kramer’s problem), thermal creep, oscillatory Couette, and pulsating Poiseuille flows are considered. A characteristic feature of the selected problems is the formation of the Knudsen boundary layers, where non-Newtonian stress and non-Fourier heat conduction exist. The linearized Navier–Stokes–Fourier and regularized 13-moment equations are utilized to analytically represent the rarefaction effects in these boundary-value problems. It is shown that the regularized 13-moment system correctly estimates the structure of Knudsen layers, compared to the linearized Boltzmann equation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cercignani C.: Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  2. de Groot S.R., Mazur P.: Non-equilibrium thermodynamics. Dover, New York (1984)

    Google Scholar 

  3. Chapman S., Cowling T.G.: The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  4. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grad H.: Principles of the kinetic theory of gases. In: Flügge, S. (eds) Handbuch der Physik, Springer, Berlin (1958)

    Google Scholar 

  6. Bobylev A.V.: The Chapman-Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29–31 (1982)

    ADS  Google Scholar 

  7. Rosenau P.: Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Phys. Rev. A 40, 7193–7196 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  8. Zhong X., MacCormack R.W., Chapman D.R.: Stabilization of the Burnett equations and applications to hypersonic flows. AIAA J. 31, 1036–1043 (1993)

    Article  MATH  ADS  Google Scholar 

  9. Jin S., Slemrod M.: Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103, 1009–1033 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Müller I., Reitebuch D., Weiss W.: Extended thermodynamics—consistent in order of magnitude. Contin. Mech. Thermodyn. 15, 113–146 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bobylev A.V.: Instabilities in the Chapman-Enskog expansion and Hyperbolic Burnett equations. J. Stat. Phys. 124, 371–399 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Söderholm L.H.: Hybrid Burnett Equations: a new method of stabilizing. Transp. Theory Stat. Phys. 36, 495–512 (2007)

    Article  MATH  ADS  Google Scholar 

  13. Struchtrup H.: Macroscopic transport equations for rarefied gas flows. Springer, New York (2005)

    MATH  Google Scholar 

  14. Struchtrup H., Torrilhon M.: Regularization of Grad’s 13-moment equations: derivation and linear analysis. Phys. Fluids 15, 2668–2680 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. Struchtrup H.: Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16, 3921–3934 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  16. Torrilhon M., Struchtrup H.: Regularized 13-moment-equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171–198 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Struchtrup H., Thatcher T.: Bulk equations and Knudsen layers for the regularized 13 moment equations. Contin. Mech. Thermodyn. 19, 177–189 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Struchtrup H., Torrilhon M.: H theorem, regularization, and boundary conditions for linearized 13-moment equations. Phys. Rev. Lett. 99, 014502 (2007)

    Article  ADS  Google Scholar 

  19. Struchtrup H.: Linear kinetic heat transfer: moment equations, boundary conditions, and Knudsen layers. Phys. A 387, 1750–1766 (2008)

    Article  Google Scholar 

  20. Torrilhon M., Struchtrup H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227, 1982–2011 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Struchtrup H., Torrilhon M.: High order effects in rarefied channel flows. Phys. Rev. E 78, 046301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Taheri P., Torrilhon M., Struchtrup H.: Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017102 (2009)

    Article  ADS  Google Scholar 

  23. Taheri, P., Struchtrup, H.: Rarefaction effects in thermally-driven microflows (2009, submitted)

  24. Gu X.J., Emerson D.R.: A computational strategy for the regularized 13-moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263–283 (2007)

    Article  MATH  ADS  Google Scholar 

  25. Ohwada T., Sone Y., Aoki K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 2042–2049 (1989)

    Article  MATH  ADS  Google Scholar 

  26. Landau L.D., Lifshitz E.M.: Fluid mechanics. Pergamon, Oxford (1987)

    MATH  Google Scholar 

  27. Gad-el-Hak, M. (eds): The MEMS handbook: introduction and fundamentals. CRC, London (2005)

    Google Scholar 

  28. Bahukudumbi P., Park J.H., Beskok A.: A unified engineering model for steady and quasi-steady shear-driven gas microflows. Microscale Thermophys. Eng. 7, 291–315 (2003)

    Article  Google Scholar 

  29. Park J.H., Bahukudumbi P., Beskok A.: Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime. Phys. Fluids 16, 317–330 (2004)

    Article  ADS  Google Scholar 

  30. Hadjiconstantinou N.G.: Oscillatory shear-driven gas flow in the transition and free-molecular-flow regimes. Phys. Fluids 17, 100611 (2005)

    Article  ADS  Google Scholar 

  31. Sharipov F., Kalempa D.: Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluid. Nanofluid. 4, 363–374 (2008)

    Article  Google Scholar 

  32. Maxwell J.C.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Article  Google Scholar 

  33. Lockerby D.A., Reese J.M., Emerson D.R., Barber R.W.: Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70, 017303 (2004)

    Article  ADS  Google Scholar 

  34. Deissler R.G.: An analysis of second order slip flow and temperature jump boundary conditions for rarefied gases. Int. J. Heat Mass Transf. 7, 681–694 (1964)

    Article  MATH  Google Scholar 

  35. Hadjiconstantinou N.G.: Comment on Cercignani’s second-order slip coefficient. Phys. Fluids 15, 2352–2354 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. Loyalka S.K.: Velocity profile in the Knudsen layer for the Kramer’s problem. Phys. Fluids 18, 1666–1669 (1975)

    Article  ADS  Google Scholar 

  37. Loyalka S.K., Petrellis N., Storvick T.S.: Some numerical results for the BGK model: thermal creep and viscous slip problems with arbitrary accommodation at the surface. Phys. Fluids 18, 1094–1099 (1975)

    Article  MATH  ADS  Google Scholar 

  38. Loyalka S.K., Ferziger H.: Model dependence of the slip coefficient. Phys. Fluids 10, 1833–1839 (1967)

    Article  MATH  ADS  Google Scholar 

  39. Loyalka S.K., Hickey K.A.: Velocity slip and defect: hard sphere gas. Phys. Fluids A 1, 612–614 (1989)

    Article  MATH  ADS  Google Scholar 

  40. Ohwada T., Sone Y., Aoki K.: Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 1588–1599 (1989)

    Article  MATH  ADS  Google Scholar 

  41. Loyalka S.K., Hickey K.A.: The Kramers problem: velocity slip and defect for a hard sphere gas with arbitrary accommodation. J. Appl. Math. Phys. (ZAMP) 41, 245–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified solutions to classical flow problems based on the BGK model. Z. Angew. Math. Phys. (ZAMP) 52, 517–534 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lockerby D.A., Reese J.M., Gallis M.A.: The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys. Fluids 17, 100609 (2005)

    Article  ADS  Google Scholar 

  44. Lilley C.R., Sader J.E.: Velocity gradient singularity and structure of the velocity profile in the Knudsen layer according to the Boltzmann equation. Phys. Rev. E 76, 026315 (2007)

    Article  ADS  Google Scholar 

  45. Loyalka S.K., Cipolla J.W.: Thermal creep slip with arbitrary accommodation at the surface. Phys. Fluids 14, 1656–1661 (1971)

    Article  ADS  Google Scholar 

  46. Kanki T., Iuchi S.: Poiseuille flow and thermal creep of a rarefied gas between parallel plates. Phys. Fluids 16, 594–599 (1973)

    Article  MATH  ADS  Google Scholar 

  47. Loyalka S.K.: Comments on Poiseuille flow and thermal creep of a rarefied gas between parallel plates. Phys. Fluids 17, 1053–1055 (1974)

    Article  MATH  ADS  Google Scholar 

  48. Loyalka S.K., Petrellis N., Storvick T.S.: Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates. Z. Angew. Math. Phys. (ZAMP) 30, 514–521 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  49. Loyalka S.K.: Temperature jump and thermal creep slip: rigid sphere gas. Phys. Fluids A1, 403–408 (1989)

    ADS  Google Scholar 

  50. Sone Y.: Kinetic theory and fluid dynamics. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  51. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Taheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taheri, P., Rana, A.S., Torrilhon, M. et al. Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics. Continuum Mech. Thermodyn. 21, 423–443 (2009). https://doi.org/10.1007/s00161-009-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0115-3

Keywords

PACS

Navigation