Skip to main content
Log in

Thermodynamics of non-local materials: extra fluxes and internal powers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amendola, G., Fabrizio, M., Golden, J.M.: A non simple rigid heat conductor with memory. Q. Appl. Math., posted on July 1, 2011 PII 00333-569x (2011) 01228-5 (to appear in print) A

  2. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  3. Cardona J.M., Forest S., Sievert R.: Towards a theory of second grade thermoelasticity. Extr. Math. 14(2), 127–140 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Cimmelli V.A., Frischmuth K.: Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction. Phys. B Condens. Matter 400(1–2), 257–265 (2007)

    Article  ADS  Google Scholar 

  5. Coleman B.D.: Thermodynamics of materials with fading memory. Arch. Ration. Mech. Anal. 13, 1–46 (1964)

    Google Scholar 

  6. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman B.D., Owen D.R.: A mathematical foundation for thermodynamics. Arch. Ration. Mech. Anal. 54, 1–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fabrizio M., Lazzari B., Morro A.: Thermodynamics of nonlocal electromagnetism and superconductivity. Math. Models Methods Appl. Sci. 13(7), 945–969 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabrizio M., Lazzari B., Muñoz Rivera J.E.: Asymptotic behaviour of a thermoelastic plate of weakly hyperbolic type. Differ. Integral Equ. 13, 1347–1370 (2000)

    MATH  Google Scholar 

  11. Fabrizio M., Morro A.: Mathematical Problems in Linear Viscoelasticity, Volume 12 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Book  Google Scholar 

  12. Fabrizio, M., Morro, A.: Electromagnetism of continuous media. Oxford Science Publications, Oxford University Press, Oxford, Mathematical modelling and applications (2003)

  13. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fried E., Gurtin M.E.: Gradient nanoscale polycrystalline elasticity: intergrain interactions and triple-junction conditions. J. Mech. Phys. Solids 57(10), 1749–1779 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Germain, P.: Cours de mécanique des milieux continus. Masson et Cie, Éditeurs, Paris. Tome I: Théorie générale (1973a)

  16. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. I: Théorie du second gradient. J. Mec. Paris 12, 235–274 (1973b)

    MathSciNet  MATH  Google Scholar 

  17. Gurtin M.E.: Modern continuum thermodynamics. In: Nemat-Nasser, S. (eds) Mechanics Today, vol. 1, pp. 168–213. Pergamon Press, New York (1972)

    Google Scholar 

  18. Gurtin M.E.: An Introduction to Continuum Mechanics, Volume 158 of Mathematics in Science and Engineering. Academic Press Inc. Harcourt Brace Jovanovich Publishers, New York (1981)

    Google Scholar 

  19. Gurtin Morton E.: On a nonequilibrium thermodynamics of capillarity and phase. Q. Appl. Math. 47(1), 129–145 (1989)

    MATH  Google Scholar 

  20. Guyer R.A., Krumhansl J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766–778 (1966a)

    Article  ADS  Google Scholar 

  21. Guyer R.A., Krumhansl J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148(2), 778–788 (1966b)

    Article  ADS  Google Scholar 

  22. Lagnese J.E.: The reachability problem of thermoelastic plates. Arch. Ration. Mech. Anal. 112, 223–267 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lagnese, J.E., Lions, J.-L.: Modelling analysis and control of thin plates, volume 6 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988)

  24. Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Manacorda T.: Teoria macroscopica della radiazione interna nei continui. Riv. Mat. Univ. Parma (4)(8), 483–494 (1982)

  26. Manacorda T.: A note on internal radiation in solids. Boll. Un. Mat. Ital. A (6)(5), 431–434 (1986)

    Google Scholar 

  27. Mehrabadi M.M., Cowin S.C., Massoudi M.: Conservation laws and constitutive relations for density-gradient-dependent viscous fluids. Contin. Mech. Thermodyn. 17(2), 183–200 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Morris J.W., de Bruyn P.L.: The two-phase interface in a simple one-component fluid. J. Colloid Interface Sci. 43, 17–29 (1973)

    Article  Google Scholar 

  29. Müller I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26, 118–141 (1967)

    Article  MATH  Google Scholar 

  30. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 198–226 (1958)

    Article  MathSciNet  Google Scholar 

  31. Noll W.: A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 48, 1–50 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Triani V., Papenfuss C., Cimmelli V.A., Muschik W.: Exploitation of the second law: Coleman-Noll and Liu procedure in comparison. J. Non-Equilib. Thermodyn. 33(1), 47–60 (2008)

    Article  ADS  MATH  Google Scholar 

  33. Truesdell C.A.: The elements of continuum mechanics. Springer, New York (1966)

    MATH  Google Scholar 

  34. Truesdell C.A.: Rational Thermodynamics. McGraw Hill, New York (1969)

    Google Scholar 

  35. Truesdell, C.A.: A First Course in Rational Continuum Mechanics, vol. 1, volume 71 of Pure and Applied Mathematics, 2nd edn. Academic Press Inc., Boston, MA, General concepts (1991)

  36. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Handbuch der Physik, Band III/3, pp. 1–602. Springer, Berlin (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Fabrizio.

Additional information

Communicated by Prof. Paolo Cermelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabrizio, M., Lazzari, B. & Nibbi, R. Thermodynamics of non-local materials: extra fluxes and internal powers. Continuum Mech. Thermodyn. 23, 509–525 (2011). https://doi.org/10.1007/s00161-011-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0193-x

Keywords

Navigation