Skip to main content
Log in

Unsteady heat and mass transfer in a rotating nanofluid layer

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present paper studies the effect of rotation on the thermal instability in a horizontal layer of a Newtonian nanofluid which incorporates the effect of Brownian motion along with thermophoresis. In order to find the concentration and the thermal Nusselt numbers for unsteady state, a nonlinear analysis, using a minimal representation of the truncated Fourier series of two terms, has been performed. The results obtained are then presented graphically. It is observed that rotation delays the rate of heat and mass transferred, representing a delay in the onset on convection. This shows a stabilizing effect for a rotating system against a nonrotating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds). Development and Applications of Non-Newtonian Flows. ASME FED, vol. 231/MD vol. 66, 1995, pp. 99–105 (1995)

  2. Maxwell J.C.: A Treatise on Electricity and Magnetism. 3rd edn. Oxford University Press, London (1892)

    Google Scholar 

  3. Choi S.: Nanofluid Technology: Current Status and Future Research, Energy Technology Division. Argonne National Laboratory, Argonne (1999)

    Google Scholar 

  4. Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)

    Article  Google Scholar 

  5. Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  ADS  Google Scholar 

  6. Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  ADS  Google Scholar 

  7. Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  8. Xie H., Wang J., Xi T., Liu Y.: Study on the thermal conductivity of SiC nanofluids. J. Chin. Ceram. Soc. 29(4), 361–364 (2001)

    Google Scholar 

  9. Xie H., Wang J., Xi T., Liu Y.: Thermal conductivity of suspensions containing nanosized SiC particles. Int. J. Thermophys. 23, 571–580 (2002)

    Article  Google Scholar 

  10. Xie H., Wang J., Xi T., Ai F.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002)

    Article  ADS  Google Scholar 

  11. Xie H., Wang J., Xi T., Liu Y., Ai F.: Dependence of the thermal conductivity of nanoparticles-fluid mixture on the base fluid. J. Mater. Sci. Lett. 21, 469–1471 (2002)

    Article  Google Scholar 

  12. Wang X., Xu X., Choi S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)

    Article  Google Scholar 

  13. Patel H.E., Das S.K., Sundararajan T., Nair A.S., George B., Pradeepa T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett. 83, 2931–2933 (2003)

    Article  ADS  Google Scholar 

  14. Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  15. Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008)

    Article  Google Scholar 

  16. Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  MATH  Google Scholar 

  17. Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)

    Article  ADS  Google Scholar 

  18. Kim J., Choi C.K., Kang Y.T., Kim M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)

    Article  Google Scholar 

  19. Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)

    Article  Google Scholar 

  20. Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  MATH  Google Scholar 

  21. Nield D.A., Kuznetsov A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 052405 (2010)

    Article  Google Scholar 

  22. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by nanofluid. Int. J. Heat Mass Transf.

  23. Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous Media 81, 409–422 (2010a)

    Article  MathSciNet  Google Scholar 

  24. Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Medium 83, 425–436 (2010b)

    Article  Google Scholar 

  25. Kuznetsov A.V., Nield D.A.: The onset of double diffusive nanofluid convection in a layer of a saturated porous medium. Transp. Porous Medium 85, 941–951 (2010c)

    Article  MathSciNet  Google Scholar 

  26. Agarwal, S., Bhadauria, B.S., Siddheshwar, P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Special Top. Rev. Porous Media Begell House, USA 2(1), 53–64 (2011)

    Google Scholar 

  27. Agarwal S., Sacheti N.C., Chandran P., Bhadauria B.S., Singh A.K.: Non-linear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Medium 93(1), 29–49 (2012)

    Article  MathSciNet  Google Scholar 

  28. Agarwal S., Bhadauria B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non equilibrium model. Transp. Porous Media Springer 90, 627–654 (2011)

    Article  MathSciNet  Google Scholar 

  29. Bhadauria B.S., Agarwal S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87(2), 585–602 (2011)

    Article  MathSciNet  Google Scholar 

  30. Bhadauria B.S., Agarwal S.: Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Media 88(1), 107–131 (2011)

    Article  MathSciNet  Google Scholar 

  31. Bhadauria, B.S., Agarwal, S.: Natural convection in a rotating nanofluid layer. In: MATEC Web of Conferences, EDP Sciences, vol. 1. p. 06001 (2012)

  32. Bhadauria B.S., Agarwal S., Kumar A.: Non-linear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90(2), 605–625 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Agarwal.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, S., Bhadauria, B.S. Unsteady heat and mass transfer in a rotating nanofluid layer. Continuum Mech. Thermodyn. 26, 437–445 (2014). https://doi.org/10.1007/s00161-013-0309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0309-6

Keywords

Navigation