Skip to main content
Log in

Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, the relaxed micromorphic model proposed in Ghiba et al. (Math Mech Solids, 2013), Neff et al. (Contin Mech Thermodyn, 2013) has been used to study wave propagation in unbounded continua with microstructure. By studying dispersion relations for the considered relaxed medium, we are able to disclose precise frequency ranges (band-gaps) for which propagation of waves cannot occur. These dispersion relations are strongly nonlinear so giving rise to a macroscopic dispersive behavior of the considered medium. We prove that the presence of band-gaps is related to a unique elastic coefficient, the so-called Cosserat couple modulus μ c , which is also responsible for the loss of symmetry of the Cauchy force stress tensor. This parameter can be seen as the trigger of a bifurcation phenomenon since the fact of slightly changing its value around a given threshold drastically changes the observed response of the material with respect to wave propagation. We finally show that band-gaps cannot be accounted for by classical micromorphic models as well as by Cosserat and second gradient ones. The potential fields of application of the proposed relaxed model are manifold, above all for what concerns the conception of new engineering materials to be used for vibration control and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2012)

    Article  Google Scholar 

  2. Altenbach H., Eremeyev V.A.: Eigen-vibrations of plates made of functionally graded material. CMC-Comput. Mater. Cont. 9(2), 153–177 (2009)

    MATH  Google Scholar 

  3. Altenbach H., Eremeyev V.A., Lebedev L.P., Rendón L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

    Article  MATH  ADS  Google Scholar 

  4. Andreaus U., dell’isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J Vib. Control 10(5), 625–659 (2004)

    Article  MATH  Google Scholar 

  5. Alibert J.-J., Seppecher P., dell’isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Auriault J.-L., Boutin C.: Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int. J. Solids Struct. 49, 3269–3281 (2012)

    Article  Google Scholar 

  7. Berezovski A., Engelbrecht J., Salupere A., Tamm K., Peets T., Berezovski M.: Dispersive waves in microstructured solids. Int. J. Solids. Struct. 50(11), 1981–1990 (2013)

    Article  Google Scholar 

  8. Carcaterra A., Akay A.: Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 12, 1971–1982 (2007)

    Article  ADS  Google Scholar 

  9. Chang C.S., Misra A.: Application of uniform strain theory to heterogeneous granular solids. ASCE J. Eng. Mech. 116(10), 2310–2328 (1990)

    Article  Google Scholar 

  10. Chiri̧t̆a S., Ghiba I.D.: Inhomogeneous plane waves in elastic materials with voids. Wave Motion 47, 333–342 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chiri̧t̆a S., Ghiba I.D.: Rayleigh waves in Cosserat elastic materials. Int. J. Eng. Sci. 51, 117–127 (2102)

    Article  MathSciNet  Google Scholar 

  12. Chiri̧t̆a S., Ghiba I.D.: Strong ellipticity and progressive waves in elastic materials with voids. Proc. R. Soc. A 466, 439–458 (2010)

    Article  ADS  Google Scholar 

  13. Cordero N.M., Gaubert A., Forest S., Busso E.P., Gallerneau F., Kruch S.: Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58(11), 1963–1994 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  15. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. 92(1), 52–71 (2011)

    Article  MathSciNet  Google Scholar 

  16. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. of Appl. Mech. 68(1), 1–19 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. Ser. A 465(2107), 2177–2196 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63(6), 1119–1141 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Economoau E.N., Sigalabs M.: Stop bands for elastic waves in periodic composite materials. J. Acoust. Soc. Am. 95(4), 1734–1740 (1994)

    Article  ADS  Google Scholar 

  20. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206 (2005)

    Article  ADS  Google Scholar 

  21. Eringen A.C.: Microcontinuum Field Theories I. Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  22. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solids: I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  23. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solids: II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  24. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z. Angew. Math. Phys. (2013). doi:10.1007/s00033-013-0347-8

  25. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  27. Ghiba, I.D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids (submitted to) (2013); arXiv:1308.3762v1[math.AP]

  28. Ghiba I.D.: Spatial estimates concerning the harmonic vibrations in rectangular plates with voids. Arch. Mech. 60, 263–279 (2008)

    MATH  MathSciNet  Google Scholar 

  29. Ghiba I.D.: On the deformation of transversely isotropic porous elastic circular cylinder. Arch. Mech. 61, 407–421 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Ghiba I.D., Galȩs C.: Some qualitative results in the linear theory of micropolar solid–solid mixtures. J. Therm. Stress. 36, 426–445 (2013)

    Article  Google Scholar 

  31. Huang G.L., Sun C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)

    Article  Google Scholar 

  32. Huang G.L., Sun C.T.: Modeling heterostructures of nanophononic crystals by continuum model with microstructures. Appl. Phys. Lett. 88, 261908 (2006)

    Article  ADS  Google Scholar 

  33. Iȩsan D., Ciarletta M.: Non-classical Elastic Solids. Longman/Wiley, New York (1993)

    Google Scholar 

  34. Jeong J., Neff P.: Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids 15(1), 78–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jeong J., Ramezani H., Münch I., Neff P.: A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature. Z. Angew. Math. Mech. 89(7), 552–569 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kafesaki M., Sigalas M.M., García N.: Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 85(19), 4044–4047 (2000)

    Article  ADS  Google Scholar 

  37. Lakes R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-structure, Ch. 1, pp. 1–22. Wiley, New York (1995)

    Google Scholar 

  38. Marangos O., Misa A., Spencer P., Katz J.L.: Scanning acoustic microscopy investigation of requency dependent-reflectance of acid etched human dentin husing homotopic measurements. IEEE Trans. UFFC 58(3), 585–595 (2011)

    Article  Google Scholar 

  39. Maurini C., dell’Isola F., Pouget J.: On models of layered piezoelectric beams for passive vibration control. J. De Physique. IV: JP, 115, 307–316 (2004)

    ADS  Google Scholar 

  40. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Article  Google Scholar 

  41. Merkel A., Tournat V., Gusev V.: Elastic waves in noncohesive frictionless granular crystals. Ultrasonics 50, 133–138 (2010)

    Article  Google Scholar 

  42. Merkel A., Tournat V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys Rev. E 82, 031305 (2010)

    Article  ADS  Google Scholar 

  43. Merkel A., Tournat V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107, 225502 (2011)

    Article  ADS  Google Scholar 

  44. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16(1), 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  45. Misra A., Jiang H.: Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20(3), 267–285 (1997)

    Article  Google Scholar 

  46. Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

    Article  MATH  Google Scholar 

  47. Münch, I.: Ein geometrisch und materiell nichtlineares Cosserat-Modell—Theorie, Numerik und Anwendungmöglichkeiten. Dissertation in der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften, ISBN 978-3-935322-12-6. Electronic version available at http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007371 (2007)

  48. Münch I., Wagner W., Neff P.: Transversely isotropic material: nonlinear Cosserat versus classical approach. Cont. Mech. Thermodyn. 23(1), 27–34 (2011)

    Article  MATH  Google Scholar 

  49. Münch I., Wagner W., Neff P.: Theory and FE-analysis for structures with large deformation under magnetic loading. Comp. Mech. 44(1), 93–102 (2009)

    Article  MATH  ADS  Google Scholar 

  50. Neff P., Fischle A., Münch I.: Symmetric Cauchy-stresses do not imply symmetric Biot-strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom. Acta Mechanica 197, 19–30 (2008)

    Article  MATH  Google Scholar 

  51. Neff P., Sydow A., Wieners C.: Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Meth. Eng. 77(3), 414–436 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Neff P., Münch I.: Simple shear in nonlinear Cosserat elasticity: bifurcation and induced microstructure. Cont. Mech. Thermodyn. 21(3), 195–221 (2009)

    Article  MATH  Google Scholar 

  53. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed micromorphic continuum. Existence, uniqueness and continuous dependence in dynamics. Contin. Mech. Thermodyn. (submitted to) (2013); arXiv:1308.3219v1[math-ph]

  54. Neff P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb. A 136, 997–1012 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  55. Neff P., Forest S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Neff P.: A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  57. Neff P.: Existence of minimizers for a geometrically exact Cosserat solid. Proc. Appl. Math. Mech. 4(1), 548–549 (2004)

    Article  MathSciNet  Google Scholar 

  58. Neff P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86, 892–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. Neff P., Jeong J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Z. Angew. Math. Mech. 89(2), 107–122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  60. Neff P., Jeong J., Fischle A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mechanica 211(3–4), 237–249 (2010)

    Article  MATH  Google Scholar 

  61. Neff P.: On material constants for micromorphic continua. In: Wang, Y., Hutter, K. (eds.) Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim 2004, pp. 337–348. Shaker Verlag, Aachen (2005)

    Google Scholar 

  62. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second gradient materials. Math. Mech. Solids. (2013). doi:10.1177/1081286512474016

  63. Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagn. Mech. 21(2), 69–87 (2005)

    Google Scholar 

  64. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity part I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  65. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Steeb H.: Ultrasound propagation in cancellous bone. Arch. Appl. Mech. 80(5), 489–502 (2009)

    Article  MathSciNet  Google Scholar 

  67. Steeb, H., Kurzeja, P.S., Frehner, M., Schmalholz, S.M.: Phase velocity dispersion and attenuation of seismic waves due to trapped fluids in residual saturated porous media. Vadose Zone J. (2012). doi:10.2136/vzj2011.0121

  68. Vasseur J.O. et al.: Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J. Phys. Condens. Matter. 10, 6051 (1998)

    Article  ADS  Google Scholar 

  69. Vasseur J.O. et al.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86(14), 3012–3015 (2001)

    Article  ADS  Google Scholar 

  70. Vidoli S., Dell’Isola F.: Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur. J. Mech. A/Solids 20(3), 435–456 (2001)

    Article  MATH  ADS  Google Scholar 

  71. Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Generalized Continuum Models for Analysis of One-Dimensional Shear Deformations in a Structural Interface with Micro-rotations, pp. 1–11 (2012); arXiv:1202.1410

  72. Zhu R., Huang H.H., Huang G.L., Sun C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rosi.

Additional information

Communicated by Andreas Öchsner.

“Sans la curiosité de l’ésprit, que serions-nous?” Marie Curie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeo, A., Neff, P., Ghiba, I.D. et al. Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mech. Thermodyn. 27, 551–570 (2015). https://doi.org/10.1007/s00161-013-0329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0329-2

Keywords

Navigation