Skip to main content
Log in

A thermo-mechanically coupled field model for shape memory alloys

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The impressive properties of shape memory alloys are produced by means of solid-to-solid phase transformations where thermal effects play an important role. In this paper, we present a model for polycrystalline shape memory alloys which takes full thermo-mechanical coupling into account. Starting from the equations of the first and the second law of thermodynamics, we derive evolution equations for the volume fractions of the different martensitic variants and a related equation for heat conduction. A thermodynamic analysis allows to formulate a complete expression for the dissipation caused by phase transformation and heat flux. This allows to model the experimentally well-documented transformation fronts in tension tests by a finite element scheme without further assumptions. Additionally, the number of required model parameters is very small in comparison with phenomenological approaches. Numerical examples are presented which show a good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouvet C., Calloch S., Lexcellent C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur. J. Mech. A-Solids 23, 37–61 (1987)

    Article  MathSciNet  Google Scholar 

  3. Castensen C., Hackl K., Mielke A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. A 458, 299–317 (2002)

    Article  ADS  Google Scholar 

  4. Dimitrijevic B., Hackl K.: A method for gradient enhancement of continuum damage models. Tech. Mech. 28, 43–52 (2008)

    Google Scholar 

  5. Dimitrijevic B., Hackl K.: A regularization framework for damage-plasticity models via gradient enhancement of the free energy. Int. J. Numer. Meth. Biomed. Eng. 27, 1199–1210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frenzel J. et al.: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mat. 58(9), 3444–3458 (2010)

    Article  Google Scholar 

  7. Goodarzi M., Hackl K.: A model for martensitic microstructure, its geometry and interface effects. PAMM 12, 345–346 (2012)

    Article  Google Scholar 

  8. Govindjee S., Miehe C.: A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comp. Meth. Appl. Mech. Eng. 191, 215–238 (2001)

    Article  MATH  Google Scholar 

  9. Govindjee S., Mielke A., Hall G.J.: The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 51, 1–26 (2003)

    Article  Google Scholar 

  10. Govindjee S., Hackl K., Heinen R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodyn. 18, 443–453 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Hackl K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45, 667–688 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Hackl K., Fischer F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464, 117–132 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Hackl K., Fischer F.D., Svoboda J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. A 467, 1186–1196 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Hackl K., Fischer F.D., Svoboda J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials (Addendum). Proc. R. Soc. A 467, 2422–2426 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Hackl K., Heinen R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19, 499–510 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Hackl K., Schmidt-Baldassari M., Zhang W.: A micromechanical model for polycrystalline shape-memory alloys. Mater. Sci. Eng.: A 378(1), 503–506 (2004)

    Article  Google Scholar 

  17. Heinen R., Hackl K.: On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Meth. Appl. Mech. Eng. 196, 2401–2412 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Helm D., Haupt P.: Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solids Struct. 40, 827–849 (2003)

    Article  MATH  Google Scholar 

  19. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)

    MATH  Google Scholar 

  20. Huo Y., Müller I.: Nonequilibrium thermodynamics of pseudoelasticity. Continuum Mech. Thermodyn. 5, 163–204 (1993)

    Article  MATH  ADS  Google Scholar 

  21. Junker P., Hackl K.: Numerical simulations of poly-crystalline shape-memory alloys based on a micromechanical model. PAMM 9, 339–340 (2009)

    Article  Google Scholar 

  22. Junker P., Hackl K.: Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model. Comput. Mech. 47, 505–517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Junker P., Hackl K.: About the influence of heat conductivity on the mechanical behavior of poly-crystalline shape memory alloys. Int. J. Struct. Chan. Solids 3, 49–62 (2011)

    Google Scholar 

  24. Junker, P., Hackl, K.: On the numerical simulation of material inhomogeneities due to martensitic phase transformations in poly-crystals. ESOMAT 2009—8th European Symposium on Martensitic Transformations, Prague, Czech Republic. doi:10.1051/esomat/200903007. EDP Sciences ESOMAT 2009 art. 03007 (2009)

  25. Junker, P.: Simulation of Shape Memory Alloys—Material Modeling Using the Principle of Maximum Dissipation. PhD Thesis, urn:nbn:de:hbz:294-33862 (2011)

  26. Kohn R.: The relaxation of double-well energy. Continuum Mech. Thermodyn. 3, 193–236 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Lexcellent C., Vivet A. et al.: Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J. Mech. Phys. Sol. 50, 2717–2735 (2001)

    Article  ADS  Google Scholar 

  28. Mehrabadi M.M., Cowin S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43, 15–41 (1987)

    Article  MathSciNet  Google Scholar 

  29. Mielke A., Theil F., Levitas V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162(2), 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Onsager L.: Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  Google Scholar 

  31. Ortiz M., Repetto E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Pan H., Thamburaja P., Chau F.S.: Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int. J. Plast. 23, 711–732 (2007)

    Article  MATH  Google Scholar 

  33. Shaw J.A.: Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plast. 16, 541–562 (2000)

    Article  MATH  Google Scholar 

  34. Schaefer, A., Wagner, M.F.-X.: Strain mapping at propagating interfaces in pseudoelastic NiTi. ESOMAT 2009—8th European Symposium on Martensitic Transformations, Prague, Czech Republic. doi:10.1051/esomat/200906031, EDP Sciences ESOMAT 2009 art. 06031 (2009)

  35. Stupkiewicz S., Petryk H.: Modelling of laminated microstructures in stress-induced martensitic transformations. J. Mech. Phys. Sol. 50, 2303–2331 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Stein E., Sagar G.: Theory and finite element computation of cyclic martensitic phase transformation at finite strain. Int. J. Numer. Meth. Eng. 74, 1–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thamburaja P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53, 825–856 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  38. Truskinovsky L.: About the normal growth approximation in the dynamical theory of phase-transitions. Continuum Mech. Thermodyn. 6, 185–208 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Wagner M.F.-X., Windl W.: Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Materialia 56, 6232–6245 (2008)

    Article  Google Scholar 

  40. Waitz T. et al.: Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 55, 419–444 (2007)

    Article  MATH  ADS  Google Scholar 

  41. Waitz T. et al.: Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Mat. Sci. Eng. A 481(482), 479–483 (2008)

    Article  Google Scholar 

  42. Ziegler H.: An Introduction to Thermodynamics. North-Holland, Amsterdam (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Junker.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, P., Hackl, K. A thermo-mechanically coupled field model for shape memory alloys. Continuum Mech. Thermodyn. 26, 859–877 (2014). https://doi.org/10.1007/s00161-014-0345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0345-x

Keywords

Navigation