Skip to main content
Log in

A thermodynamic approach to model the caloric properties of semicrystalline polymers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demirel B., Yaras A., Elcicek H.: Crystallization behavior of PET materials. BAÜ Fen Bil. Enst Cilt 13(1), 26–35 (2011)

    Google Scholar 

  2. Phang I.Y., Ma J., Shen L., Liu T., Zhang W.: Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites. Polym. Int. 55, 71–79 (2006)

    Article  Google Scholar 

  3. Wunderlich B.: Thermodynamic description of condensed phases. J. Therm. Anal. Calorim. 102, 413–424 (2010)

    Article  Google Scholar 

  4. Wunderlich B.: Reversible crystallisation and the rigid-amorphous phase in semicrystalline macromolecules. Prog. Polym. Sci. 28, 383–450 (2003)

    Article  Google Scholar 

  5. Menczel J., Wunderlich B.: Heat capacity hysteresis of semicrystalline macromolecular glasses. J. Polym. Sci. Polym. Lett. Ed. 19, 261 (1981)

    Article  ADS  Google Scholar 

  6. Cheng S.Z.D., Wunderlich B.: Thermal analysis of poly(butylene terephthalate) for heat capacity, rigid-amorphous content and transition behavior. Macromolecules 21, 2443–2458 (1988)

    Article  Google Scholar 

  7. Cheng S.Z.D., Pan R., Wunderlich B.: Glass transition and melting behavior of poly(ethylene-2,6-naphthalenedicarboxylate). Macromol. Chem. 189, 789–797 (1988)

    ADS  Google Scholar 

  8. Huo P., Cebe P.: Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide). Colloid Polym. Sci. 270, 652–840 (1992)

    Article  Google Scholar 

  9. Alsleben M., Schick C.: The melting of polymers - a three-phase approach. Thermochim. Acta 238, 203–227 (1994)

    Article  Google Scholar 

  10. Song M., Hourston D.J.: Temperature-modulated scanning calorimetry: some comments on the rigid amorphous fraction in semicrystalline poly(ethylene terephthalate). J. Therm. Anal. 54, 651–657 (1998)

    Article  Google Scholar 

  11. Xu H., Ince B.S., Cebe P.: Development of the crystallinity and rigid amorphous fraction in cold-crystallized isotactic polystyrene. J. Polym. Sci. 41, 3026–3036 (2003)

    Article  Google Scholar 

  12. Arnoult M., Dargent E., Mano J.F.: Mobile amorphous phase fragility in semi-crystalline polymers: comparison of PET and PLLA. Polymer 48, 1012–1019 (2007)

    Article  Google Scholar 

  13. Schick C., Wurm A., Mohamed A.: Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid. Polym. Sci. 279, 800–806 (2001)

    Article  Google Scholar 

  14. Schick C.: Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 395, 1589–1611 (2009)

    Article  Google Scholar 

  15. Zhuravlev E., Schmelzer J.W.P., Wunderlich B., Schick C.: Kinetics of nucleation and crystallization in poly(ɛ-caprolactone) (PCL). Polymer 52, 1983–1997 (2011)

    Article  Google Scholar 

  16. Xu H., Cebe P.: Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37, 2797–2806 (2004)

    Article  ADS  Google Scholar 

  17. Piccarolo S., Brucato Y., Kiflie Z.: Non-isothermal crystallization kinetics of PET. Polym. Eng. Sci. 40, 1263–1272 (2000)

    Article  Google Scholar 

  18. Dlubek G., Sen Gupta A., Pionteck J., Häßler R., Krause-Rehberg R., Kaspar H., Lochhaus K.H.: Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study. Polymer 40, 6075–6089 (2005)

    Article  Google Scholar 

  19. Wurm, A.: Das Verhältnis von irreversiblen und reversiblen Prozessen während des Kristallisierens und Schmelzens von Polymeren, Dissertation, University of Rostock (2001)

  20. Strobl G.: Laws controlling crystallization and melting in bulk polymers. Rev. Modern Phys. 81, 1287–1300 (2009)

    Article  ADS  Google Scholar 

  21. Strobl G.: Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog. Polym. Sci. 31, 398–442 (2006)

    Article  Google Scholar 

  22. Strobl G.: A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur. Phys. J. E 18, 295–309 (2005)

    Article  Google Scholar 

  23. Dietz W.: Sphärolithwachstum in Polymeren. Coll. Polym. Sci. 259, 413–429 (1981)

    Article  Google Scholar 

  24. Avrami M.: Kinetics of phase change. II. Transformation time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)

    Article  ADS  Google Scholar 

  25. Banks W., Sharples A.: The AVRAMI equation in polymer crystallization. Die Makromolekulare Chemie 59, 233–236 (1963)

    Article  Google Scholar 

  26. Sorrentino, L., Iannace, S., Di Maio, E., Acierno, D.: Isothermal crystallization kinetics of chain extended PET. J. Polym. Sci. B Polym. Phys. 1966–1972 (2005)

  27. Lu X.F., Hai J.N.: Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42, 9423–9431 (2001)

    Article  Google Scholar 

  28. Nakamura K., Watanabe T., Katayama K., Amano T.: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 16, 1077–1091 (1972)

    Article  Google Scholar 

  29. Ruitenberg G., Woldt E., Petford-Long A.K.: Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378, 97–105 (2001)

    Article  Google Scholar 

  30. Malkin A.YA., Beghishev V.P., Keapin I.A., Andrianova Z.S.: General treatment of polymer crystallization kinetics—part 1. A new macrokinetic equation and its experimental verification. Polym. Eng. Sci. 24, 1396–1401 (1984)

    Article  Google Scholar 

  31. Malkin A.YA., Beghishev V.P., Keapin I.A., Andrianova Z.S.: General treatment of polymer crystallization kinetics—part 2. The kinetics of nonisothermal crystallization. Polym. Eng. Sci. 24, 1402–1408 (1984)

    Article  Google Scholar 

  32. Krigbaum W.R.: Structure and physical properties of crystalline polymers. J. Polym. Sci. Part C 15, 251–262 (1966)

    Article  Google Scholar 

  33. Piccarolo S., Saiu M., Brucato V., Titomanilo G.: Crystallization of polymer melts under fast cooling. II. High-purity iPP. J. Appl. Polym. Sci. 46, 625–634 (1992)

    Article  Google Scholar 

  34. Shardakov I., Golotina L.: Modeling of deformation processes in semicrystalline polymers with allowance for the glass transition in the amorphous phase. J. Mater. Sci. Eng. B 1, 703–709 (2011)

    Google Scholar 

  35. Boyce M.C., Socrate S., Llana P.G.: Constitutive model for the finite deformation stress-strain behavior of poly (ethylene terephthalate) above the glass transition. Polymer 41, 2183–2201 (2000)

    Article  Google Scholar 

  36. Thien-Nga, L., Guilie, J., Le Tallec, P.: Thermodynamic model for strain-induced crystallisation in rubber. In: Eberhardsteiner, J., et al. (eds.) European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Austria, 10–14 September (2012)

  37. Ahzi S., Makradi A., Gregory R.V., Eddie D.D.: Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35, 1139–1148 (2003)

    Article  Google Scholar 

  38. Chevalier L., Marco Y.: Identification of a strain induced crystallisation model for PET under uni- and bi-axial loading: influence of temperature dispersion. Mech. Mater. 39, 596–609 (2007)

    Article  Google Scholar 

  39. Yang, Z.J., Harkin-Jones, E.M.A., Armstrong, C.G., Menary, G.H.: Finite element modelling of stretch-blow moulding of PET bottles using Buckley model: plant tests and effects of process conditions and material parameters. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 218, 237–250

  40. Luo Y.M., Chevalier L., Utheza F., Monteiro E.: Numerical simulation of the thermodependant visco hyperelastic behavior of polyethylene terephthalate near the glass transition temperature: prediction of the self-heating during biaxial tension test. Polym. Eng. Sci. 53, 2683–2695 (2013)

    Article  Google Scholar 

  41. Rao I.J., Rajagopal K.R.: A study of strain-induced crystallization of polymers. Int. J. Solids Struct. 38, 1149–1167 (2001)

    Article  MATH  Google Scholar 

  42. Rao I.J., Rajagopal K.R.: A thermodynamic framework for the study of crystallization in polymers. Z. Angew. Math. Phys. 53, 365–406 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dusunceli N., Colak O.U.: Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. Int. J. Plast. 24, 1224–1242 (2008)

    Article  MATH  Google Scholar 

  44. Mrabet L., Rahouadi R., Cunat C.: An irreversible thermodynamic model for semicrystalline polymers submitted to multisequence loading at large strain. Polym. Eng. Sci. 45, 42–51 (2005)

    Article  Google Scholar 

  45. Sanchez I.C., Eby R.K.: Thermodynamics and crystallization of random copolymers. Macromolecules 8, 638–641 (1975)

    Article  ADS  Google Scholar 

  46. Sanchez I.C., Eby R.K.: Crystallization of random copolymers. J. Res. Natl. Bureau Stand. Phys. Chem. 77, 353–358 (1973)

    Article  Google Scholar 

  47. Müller I.: Grundzüge der Thermodynamik. Springer Publikation House, (2001)

  48. Haupt P.: Continuum mechanics and theory of materials. Springer publication house, (2002)

  49. Lion A., Dippel B., Liebl C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51, 729–739 (2014)

    Article  Google Scholar 

  50. Lion A., Engelhardt M., Johlitz M.: Thermomechanical and calorimetric behaviours of supported glass-forming films: a study based on thermodynamics with internal variables. Thin Solid Films 522, 441–451 (2012)

    Article  ADS  Google Scholar 

  51. Lion A., Liebl C., Kolmeder S., Peters J.: Representation of the glass-transition in mechanical and thermal properties of glass-forming materials: a three-dimensional theory based on thermodynamics with internal state variables. J. Mech. Phys. Solids 58, 1338–1360 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Lion A., Yagimli B.: On the frequency-dependent specific heat and TMDSC: constitutive modelling based on thermodynamics with internal state variables. Thermochim. Acta 490, 64–74 (2009)

    Article  Google Scholar 

  53. Lion A., Peters J.: Coupling effects in dynamic calorimetry: frequency-dependent relations for specific heat and thermomechanical responses—a one-dimensional approach based on thermodynamics with internal state variables. Thermochim. Acta 500, 76–87 (2010)

    Article  Google Scholar 

  54. Zhou, Q., Binetruy, C., Burtin, C., Poitou, A.: A dynamic method for the residual stress measurement during polymer crystallization. Exp. Mech. (2014). doi:10.1007/s11340-014-9909-8

  55. Williams M.L., Landel R.F., Ferry J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  56. Varma-Nair M., Wunderlich B.: Heat capacity and other thermodynamic properties of linear macromolecules X. Update of the ATHAS 1980 Data Bank. J. Phys. Chem. Ref. Data 20, 249–404 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lion.

Additional information

Communicated by Andreas Öchsner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lion, A., Johlitz, M. A thermodynamic approach to model the caloric properties of semicrystalline polymers. Continuum Mech. Thermodyn. 28, 799–819 (2016). https://doi.org/10.1007/s00161-015-0415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0415-8

Keywords

Navigation