Skip to main content
Log in

Closure conditions for non-equilibrium multi-component models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A class of non-equilibrium models for compressible multi-component fluids in multi-dimensions is investigated taking into account viscosity and heat conduction. These models are subject to the choice of interfacial pressures and interfacial velocity as well as relaxation terms for velocity, pressure, temperature and chemical potentials. Sufficient conditions are derived for these quantities that ensure meaningful physical properties such as a non-negative entropy production, thermodynamical stability, Galilean invariance and mathematical properties such as hyperbolicity, subcharacteristic property and existence of an entropy–entropy flux pair. For the relaxation of chemical potentials, a two-component and a three-component models for vapor–water and gas–water–vapor, respectively, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abgrall R., Karni S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambroso A., Chalons C., Coquel F., Galié T., Godlewski E., Raviart P., Seguin N.: The drift-flux asymptotic limit of barotropic two-phase two-pressure models. Commun. Math. Sci. 6(2), 521–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrianov, N.: Analytical and numerical investigation of two-phase flows. Ph.D. thesis, Otto-von-Guericke University, Magdeburg (2003)

  4. Baer M., Nunziato J.: A two-phase mixture theory of the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flows 12, 861–889 (1986)

    Article  MATH  Google Scholar 

  5. Coquel F., Gallouët T., Helluy P., Hérard J.M., Hurisse O., Seguin N.: Modelling compressible multiphase flows. Proc. ESAIM 40, 34–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coquel F., Hérard J.M., Saleh K., Seguin N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12(3), 593–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drew D.: Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  ADS  MATH  Google Scholar 

  8. Drew D., Passman S.: Theory of Multicomponent Fluids, Applied Mathematical Sciences, vol. 135. Springer, Berlin (1999)

    Book  Google Scholar 

  9. Dreyer W., Duderstadt F., Hantke M., Warnecke G.: Bubbles in liquids with phase transition. Part 1: on phase change of a single vapor bubble in liquid water. Contin. Mech. Thermodyn. 24, 461–483 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Embid P., Baer M.: Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4, 279–312 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Flåtten T., Lund H.: Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21(12), 2379–2407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallouët T., Hérard J.M., Seguin N.: Numerical modelling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14(5), 663–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goatin P., LeFloch P.: The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. Henri Poincare 21(6), 881–902 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Godlewski, E., Raviart, P.A.: Hyperbolic systems of conservation laws. Mathematics and Applications, Ellipses, Paris (1991)

  15. Godlewski E., Raviart P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York, NY (1996)

    Book  MATH  Google Scholar 

  16. Guillemaud, V.: Modélisation et simulation numérique des éqoulements diphasiques par une approche bifluide à deux pressions. Ph.D. thesis, Aix Marseille Université (2007). https://tel.archives-ouvertes.fr/tel-0169178

  17. Han, E., Hantke, M., Müller, S.: Modeling of multi-component flows with phase transition and application to collapsing bubbles. IGPM Preprint 409, RWTH Aachen University (2014)

  18. Hérard J.M.: A three-phase flow model. Math. Comput. Model. 45, 732–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hérard J.M., Hurisse O.: A fractional step method to compute gas-liquid flows. Comput. Fluids 55, 57–69 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kapila A., Menikoff R., Bdzil J., Son S., Stewart D.: Two-phase modelling of DDT in granular materials: reduced equations. Phys. Fluid 13, 3002–3024 (2001)

    Article  ADS  MATH  Google Scholar 

  21. Kato T.: The cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lallemand M., Chinnayya A., Metayer O.L.: Pressure relaxation procedures for multi-phase compressible flows. Int. J. Numer. Methods Fluids 49(1), 1–56 (2005)

    Article  ADS  MATH  Google Scholar 

  23. Liu, I., Sampaio, R.: On objectivity and the principle of material frame-indifference. In: Cardona, A., Kohan, P., Quinteros, R., Storti, M. (eds.) Mecánica Computacional vol XXXI, pp. 1553–1569. Salta, Argentina, 13–16 November 2012 (2012)

  24. Liu T.P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys 108, 153–175 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Menikoff R., Plohr B.: The riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75–130 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Métayer O.L., Massoni J., Saurel R.: Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena. Proc. ESAIM 40, 103–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Müller I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  28. Müller I., Müller W.: Fundamentals of Thermodynamics and Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Müller, S., Hantke, M., Richter, P.: Closure conditions for non-equilibrium multi-component models. IGPM Preprint 414, RWTH Aachen University (2014)

  30. Parés C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rodio, M., Abgrall, R.: An innovative phase transition modeling for reproducing cavitation through a five-equation model and theoretical generalization to six and seven-equation models. Int. J. Heat Mass Transf. 89, 1386–1401 (2015). doi:10.1016/j.ijheatmasstransfer.2015.05.008

  32. Saleh, K.: Analyse et simulation numérique par relaxation d’écoulements diphasiques compressibles. Ph.D. thesis, Université Pierre et Marie Curie, Paris (2012). https://tel.archives-ouvertes.fr/tel-00761099

  33. Saurel R., Abgrall R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Saurel R., Petitpas F., Abgrall R.: Modelling phase transition in metastable liquids: application to cavitation and flashing flows. J. Fluid Mech. 607, 313–350 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Söhnholz, H., Kurz, T.: Thermal effects upon collapse of laser-induced cavitation bubbles. In: Proceedings of 8th International Symposium on Cavitation, Singapore, 13–16 August 2012 (2012). doi:10.3850/978-981-07-2826-7_137

  36. Whitham G.: Linear and Nonlinear Waves. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  37. Zein, A.: Numerical methods for multiphase mixture conservation laws with phase transition. Ph.D. thesis, Otto-von-Guericke University, Magdeburg (2010)

  38. Zein A., Hantke M., Warnecke G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zein A., Hantke M., Warnecke G.: On the modelling and simulation of a laser-induced cavitation bubble. Int. J. Numer. Methods. Fluids. 73(2), 172–203 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Müller.

Additional information

Communicated by Andreas Öchsner.

The P. Richter acknowledges funding by the Friedrich-Naumann-Stiftung für die Freiheit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S., Hantke, M. & Richter, P. Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28, 1157–1189 (2016). https://doi.org/10.1007/s00161-015-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0468-8

Keywords

Navigation