Skip to main content

Advertisement

Log in

Non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents a non-classical continuum theory for fluent continua in which the conservation and balance laws are derived by incorporating both internal rotation rates arising from the velocity gradient tensor and the rotation rates of the Cosserats. Specifically, in this non-classical continuum theory we have (1) the usual velocities (\(\bar{ \pmb {\varvec{v }}}\)), (2) the three internal rotation rates (\({}_i^t\bar{ \pmb {\varvec{\Theta }}}\)) about the axes of a fixed triad whose axes are parallel to the x-frame arising from the velocity gradient tensor \((\bar{ \pmb {\varvec{L }}})\) that are completely defined by the antisymmetric part of the velocity gradient tensor, and (3) three additional rotation rates (\({}_e^t\bar{ \pmb {\varvec{\Theta }}}\)) about the axes of the same triad located at each material point as additional three unknown degrees of freedom, referred to as Cosserat rotation rates. This gives rise to \(\bar{ \pmb {\varvec{v }}}\) and \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) as six degrees of freedom at a material point. The internal rotation rates \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\), often neglected in classical fluid mechanics, exist in all deforming fluent continua as these are due to velocity gradient tensor. When the internal rotation rates \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\) are resisted by deforming fluent continua, conjugate moment tensor arises that together with \({}_i^t\bar{ \pmb {\varvec{\Theta }}}\) may result in energy storage and/or dissipation, which must be considered in the conservation and balance laws. The Cosserat rotation rations \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) also result in conjugate moment tensor that together with \({}_e^t\bar{ \pmb {\varvec{\Theta }}}\) may also result in energy storage and/or dissipation. The main focus of this paper is a consistent derivation of conservation and balance laws for fluent continua that incorporate the aforementioned physics and associated constitutive theories for thermofluids using the conditions resulting from the entropy inequality. The material coefficients derived in the constitutive theories are clearly defined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

  2. Voigt, W.: Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl. Ges. Göttingen, 34, (1887)

  3. Voigt, W.: Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl., pp. 72–79, (1894)

  4. Surana, K.S., Joy, A.D., Reddy, J.N.: Non-Classical Continuum Theory for Solids Incorporating Internal Rotations and Rotations of Cosserat Theories. Continuum Mechanics and Thermodynamics, (accepted) (2017)

  5. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  7. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  8. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  9. Prager, W.: Strain hardening under combined stresses. J. Appl. Phys. 16, 837–840 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  10. Reiner, M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Todd, J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  13. Rivlin, R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  14. Wang, C.C.: On representations for isotropic functions, part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  Google Scholar 

  15. Wang, C.C.: On representations for isotropic functions, Part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  16. Wang, C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  17. Wang, C.C.: Corrigendum to ‘representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  18. Smith, G.F.: On a fundamental error in two papers of C.C. Wang, ‘on representations for isotropic functions, part I and part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  19. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spencer, A.J.M., Rivlin, R.S.: The Theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spencer, A.J.M., Rivlin, R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spencer, A.J.M.: Theory of Invariants. Chapter 3 ‘Treatise on Continuum Physics, I’ Edited by A. C. Eringen, Academic Press, 1971

  23. Boehler, J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 57, 323–327 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  26. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for fluent continua. J. Therm. Eng. 1(1), 14–30 (2015)

    Google Scholar 

  27. Surana, K.S., Powell, M.J., Reddy, J.N.: Ordered rate constitutive theories for internal polar thermofluids. Int. J. Math. Sci. Eng. Appl. 9(3), 51–116 (2015)

    Google Scholar 

  28. Surana, K.S., Long, S.W., Reddy, J.N.: Rate constitutive theories of orders \(n\) and \({}^1\!n\) for internal polar non-classical thermofluids without memory. Appl. Math. 7, 2033–2077 (2016)

    Article  Google Scholar 

  29. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for solid continua. J. Therm. Eng. 1(1), 1–13 (2015)

    Article  Google Scholar 

  30. Surana, K.S., Reddy, J.N., Nunez, D., Powell, M.J.: A polar continuum theory for solid continua. Int. J. Eng. Res. Ind. Appl. 8(2), 77–106 (2015)

    Google Scholar 

  31. Surana, K.S., Powell, M.J., Reddy, J.N.: Constitutive theories for internal polar thermoelastic solid continua. J. Pure Appl. Math. Adv. Appl. 14(2), 89–150 (2015)

    Article  Google Scholar 

  32. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation of solids using first piola-kirchhoff stress tensor. J. Pure Appl. Math. Adv. Appl. 16(1), 1–41 (2016)

    Article  Google Scholar 

  33. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation and finite strain in solids. Int. J. Pure Eng. Math. 4(2), 59–97 (2016)

    Google Scholar 

  34. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Skew-symmetric coupled-stress fluid mechanics. Acta Mech. 226, 871–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  36. Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis, Boca Raton (2015)

    MATH  Google Scholar 

  37. Surana, K.S., Ma, Y., Reddy, J.N., Romkes, A.: The rate constitutive equations and their validity for progressively increasing deformation. Mech. Adv. Mater. Struct. 17, 509–533 (2010)

    Article  Google Scholar 

  38. Eringen, A.C.: Mechanics of Continua. Wiley, Hoboken (1967)

    MATH  Google Scholar 

  39. White, F.M.: Fluid Mechanics, 7th edn. McGraw-Hill, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Joy, A.D. & Reddy, J.N. Non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates. Continuum Mech. Thermodyn. 29, 1249–1289 (2017). https://doi.org/10.1007/s00161-017-0579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0579-5

Keywords

Navigation