Skip to main content
Log in

Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by “network-reinforced matrices,” say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen, R.M., Walls, F.M.: Effective stiffness of randomly oriented fiber compositions. J. Compos. Mater. 6, 518–531 (1972)

    Article  ADS  Google Scholar 

  2. Boucher, S.: On the effective moduli of isotropic two-phase elastic composites. J. Compos. Mater. 8, 82–89 (1974)

    Article  ADS  Google Scholar 

  3. Christensen, R.M.: Mechanics of Composite Materials. Wiley, Hoboken (1979)

    Google Scholar 

  4. Christensen, R.M.: Isotropic properties of platelet reinforced media. J. Eng. Mater. Technol. 101(3), 299–303 (1979)

    Article  MathSciNet  Google Scholar 

  5. Franciosi, P., El Omri, A.: Effective properties of fiber and platelet systems and related phase arrangements in n-phase heterogeneous media. Mech. Res. Commun. 38, 38–44 (2011)

    Article  MATH  Google Scholar 

  6. Franciosi, P.: Laminate system schemes for effective property estimates of architectured composites with co(dis)continuous phases. Mech. Res. Commun. 45, 70–76 (2012)

    Article  Google Scholar 

  7. Veenstra, H., Verkooijen, P.C.J., van Lent, B.J.J., van Dam, J., de Boer, A.P., Nijhof, A.H.J.: On the mechanical properties of co-continuous polymer blends: experimental and modelling. Polymer 41(5), 1817–1826 (2000)

    Article  Google Scholar 

  8. Kinney, J.H., Stölken, J.S., Smith, T.S., Ryaby, J.T., Lane, N.E.: An orientation distribution function for trabecular bone. Bone 36(2), 193–201 (2005)

    Article  Google Scholar 

  9. Clyne, T.W., Markaki, A.E., Tan, J.C.: Mechanical and magnetic properties of metal fibre networks with and without a polymeric matrix. Compos. Sci. Technol. 65, 2492–2499 (2005)

    Article  Google Scholar 

  10. Agoras, M., Lopez-Pamies, O., Ponte, Castaneda P.: Onset of macroscopic instabilities in fiber-reinforced elastomers at finite strain. J. Mech. Phys. Solids 57, 1828–1850 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Broedersz, C.P., Mao, X., Lubensky, T.C., MacKintosh, F.C.: Criticality and isostaticity in fibre networks. Nat. Phys. 12(7), 983–988 (2011)

    Article  Google Scholar 

  12. Cuomo, M., Dell’Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos. B Eng. 115, 423–448 (2017)

    Article  Google Scholar 

  13. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Della Corte, A., Dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped Euler beam (Elastica) with distributed load: large deformations. Math. Models Methods Appl. Sci. 27(8), 1391–1421 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivan, G., Della Corte, A., Dell’Isola, F.: Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)

    Article  Google Scholar 

  16. Scerrato, D., Zhurba Eremeeva, I.A., Lekszyki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheet. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und mechanic 96(11), 1268–1279 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc. Est. Acad. Sci. 64(3), 219–225 (2015)

    Article  Google Scholar 

  20. Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

    Article  ADS  Google Scholar 

  21. Rahali, Y., Giorgio, I., Ganghoffer, J.F., Dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Andreaus, U., Sawczuk, A.: Deflection of elastic-plastic frames at finite spread of yielding zones. Comput. Methods Appl. Mech. Eng. 39(1), 21–35 (1983)

    Article  ADS  MATH  Google Scholar 

  23. Andreaus, U., D’Asdia, P.: Displacement analysis in elastic-plastic frames at plastic collapse. Comput. Methods Appl. Mech. Eng. 42(1), 19–35 (1984)

    Article  ADS  MATH  Google Scholar 

  24. Andreaus, U., D’Asdia, P.: Incremental analysis of elastic-plastic frames at finite spread of yielding zones. Eng. Fract. Mech. 21(4), 827–839 (1985)

    Article  Google Scholar 

  25. Andreaus, U., D’Asdia, P.: An incremental procedure for deformation analysis of elastic-plastic frames. Int. J. Numer. Methods Eng. 26(4), 769–784 (1988)

    Article  MATH  Google Scholar 

  26. König, J.A.: An iterative method of evaluation of elastic-plastic deflections of hyperstatic framed structures. Ingenieer-Archiv 55(3), 202–212 (1985)

    Article  Google Scholar 

  27. Rangelov, T.V., Manolis, G.D., Dineva, P.S.: Elastodynamic fundamental solutions for certain families of 2d inhomogeneous anisotropic domains: basic derivations. Eur. J. Mech. A/Solids 24, 820–836 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Manolis, G.D., Makra, K., Dineva, P.S., Rangelov, T.V.: Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique. Earthq. Struct. 5(2), 161–205 (2013)

    Article  Google Scholar 

  29. Chen, Z., Jeffrey, R.G., Pandurangan, V.: The far-field deformation caused by a hydraulic fracture in an inhomogeneous elastic half-space. Int. J. Solids Struct. 130, 220–231 (2018)

    Article  Google Scholar 

  30. Willis, J.R., Acton, J.R.: Overall elastic moduli of a dilute suspension of spheres. Q. J. Mech. Appl. Mech. 29, 163–177 (1976)

    Article  MATH  Google Scholar 

  31. Kröner, E.: Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media. In: Weng, G.J., Taya, M., Abe, H. (eds.) Micromechanics and Inhomogeneity, pp. 197–211. Springer, New York (1990)

    Chapter  Google Scholar 

  32. Lebensohn, R.A., Tome, C.N.: Anisotropic approach for the simulation of plastic deformation and texture development of polycrystals. Acta Metall. 41, 2611–2624 (1993)

    Article  Google Scholar 

  33. El Omri, A., Fennan, A., Sidoroff, F., Hihi, A.: Elastic-plastic homogenization for layered composites. Eur. J. Mech. A/Solids 19, 585–601 (2000)

    Article  MATH  Google Scholar 

  34. Ponte Castaneda, P., Willis, J.R.: The effect of spatial distribution on the effective behaviour of composite materials and cracked media. J. Mech. Phys. Solids 43(12), 1919–1951 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Bornert, M., Stolz, C., Zaoui, A.: Morphologically representative pattern-based bounding in elasticity. J. Mech. Phys. Solids 44(3), 307–331 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Franciosi, P.: The boundary-due terms in the Green operator of inclusion patterns from distant to contact and to connected situations using Radon transforms: illustration for spheroid alignments in isotropic media. Int. J. Solids Struct. 47(2), 304–319 (2010)

    Article  MATH  Google Scholar 

  37. Franciosi, P., Barboura, S., Charles, Y.: Analytical mean Green operators/Eshelby tensors for patterns of coaxial finite long or flat cylinders in isotropic matrices. Int. J. Solids Struct. 66(1), 1–19 (2015)

    Article  Google Scholar 

  38. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 421, 379–396 (1957)

    MathSciNet  MATH  Google Scholar 

  39. Berveiller, M., Fassi-Ferhi, O., Hihi, A.: The problem of two plastic and heterogeneous inclusions in an anisotropic medium. Int. J. Eng. Sci. 25(6), 691–709 (1987)

    Article  MATH  Google Scholar 

  40. Kouris, D., Tsuchida, E.: On the elastic interaction between two fibres in a continuous fibre composite under thermal loading. Mech. Mater. 12, 131–146 (1991)

    Article  Google Scholar 

  41. Anttreter, T., Fisher, F.D.: The stress state around two spatially arranged ellipsoidal inclusions. A case study for high-speed tool steel. Comput. Mater. Sci. 7, 247–252 (1996)

    Article  Google Scholar 

  42. Franciosi, P., Lormand, G.: Using the Radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3/4), 585–606 (2004)

    Article  MATH  Google Scholar 

  43. Gel’fand, I.M., Graev, M.I., Vilenkin, NYa.: Generalized Functions, Integral Geometry and Representation Theory, vol. 5. Academic Press, New York (1966)

    MATH  Google Scholar 

  44. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Stuttgart (1986)

    MATH  Google Scholar 

  45. Ramm, A.G., Katsevitch, A.I.: Radon Transform and Local Tomography. CRC Press, Boca Raton (1996). ISBN 0849394929

    Google Scholar 

  46. Helgason, S.: The Radon Transform, Progress in Mathematics, vol. 5. Birkhausser, Boston (1980)

    Book  MATH  Google Scholar 

  47. Willis, J.R.: Interfacial stresses induced by arbitrary loading of dissimilar elastic half-spaces joined over a circular region. IMA J. Appl. Math. 7, 179–197 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, C.-Y.: Elastic fields produced by a point source in solids of general anisotropy. J. Eng. Math. 32, 41–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pan, E., Tonon, F.: Three dimensional Green’s functions in anisotropic piezoelectric solids. Int. J. Solids Struct. 37, 943–958 (2000)

    Article  MATH  Google Scholar 

  50. Meisner, M.J., Kouris, D.A.: Interaction of two elliptic inclusions. Int. J. Solids Struct. 32, 451–466 (1995)

    Article  MATH  Google Scholar 

  51. Ju, J.W., Sun, L.Z.: A novel formulation for the exterior point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. 66, 570–574 (1999)

    Article  ADS  Google Scholar 

  52. Nakasone, Y., Nishiyama, H., Nojiri, Y.: Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Mater. Sci. Eng. A 285, 229–238 (2000)

    Article  Google Scholar 

  53. Kushch, V.I., Shmegera, S.V., Buryachenko, V.A.: Interacting elliptic inclusions by the method of complex potentials. Int. J. Solids Struct. 42, 5491–5512 (2005)

    Article  MATH  Google Scholar 

  54. Zheng, Q.S., Zhao, Z.H., Du, D.X.: Irreducible structure, symmetry and average of Eshelby’s tensor field in isotropic elasticity. J. Mech. Phys. Solids 54(2), 368–383 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Franciosi, P.: Mean and axial Green and Eshelby tensors for an inclusion with finite cylindrical shape. Mech. Res. Commun. 59, 26–36 (2014)

    Article  Google Scholar 

  56. Franciosi, P.: On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions. Int. J. Solids Struct. 42(11/12), 3509–3531 (2005)

    Article  MATH  Google Scholar 

  57. Franciosi, P.: A Decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. (2018). https://doi.org/10.1016/j.ijsolstr.2018.04.005

    Article  Google Scholar 

  58. Hasegawa, H., Lee, G., Mura, T.: The stress field caused by a circular-cylindrical inclusion. J. Appl. Mech. 59, 107–114 (1992)

    Article  MATH  Google Scholar 

  59. Wu, L., Du, S.Y.: The elastic field caused by a circular cylindrical inclusion—part II: inside the region \(x1^{2}+x2^{2} >{a}^{2}\). J. Appl. Mech. 62, 585–589 (1995)

    Article  ADS  Google Scholar 

  60. Mura, T.: Micro-mechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)

    Book  MATH  Google Scholar 

  61. Cherkaev, A.: Variational Methods for Structural Optimization, Applied Mathematical Sciences. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  62. Buryachenko, V.A.: Multiparticle effective field and related methods in micromechanics of composite materials. Appl. Mech. Rev. 54, 1–47 (2001)

    Article  ADS  Google Scholar 

  63. Buryachenko, V.A.: Micromechanics of Heterogeneous Materials. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  64. Buryachenko, V.A., Kushch, V.I., Roy, A.: Effective thermoelastic properties of ramdom structure composites reinforced by the clusters of deterministic structures (application to clay composites). Acta Mech. 192(1–4), 135–167 (2007)

    Article  MATH  Google Scholar 

  65. Franciosi, P., Charles, Y.: Mean Green operator and Eshelby tensor for hemispherical inclusions and bi-material spherical inclusions in infinite spaces. Mech. Res. Commun. 75, 57–66 (2016)

    Article  Google Scholar 

  66. Franciosi, P.: Transversally isotropic Magneto-electro-elastic composites with co-(dis)continuous phases. Int. J. Solids Struct. 50, 1013–1031 (2013)

    Article  Google Scholar 

  67. Walpole, L.J.: Elastic behavior of composites materials. Adv. Appl. Mech. 21, 169–242 (1981)

    Article  MATH  Google Scholar 

  68. Franciosi, P., Lebail, H.: Anisotropy features of phase and particle spatial pair distributions in various matrix/inclusions structures. Acta Mater. 52, 3161–3172 (2004)

    Article  Google Scholar 

  69. Eremeyev, V.A., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 1, 1–22 (2017)

    MATH  Google Scholar 

  70. Altenbach, H., Eremeyev, V.A.: On the elastic plates and shells with residual surface stresses. Proc. IUTAM 21, 25–32 (2017)

    Article  MATH  Google Scholar 

  71. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375,398 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheet: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

Download references

Acknowledgements

Mario Spagnuolo has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Franciosi.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franciosi, P., Spagnuolo, M. & Salman, O.U. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mech. Thermodyn. 31, 101–132 (2019). https://doi.org/10.1007/s00161-018-0668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0668-0

Keywords

Navigation