Skip to main content
Log in

Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

By using modern additive manufacturing techniques, a structure at the millimeter length scale (macroscale) can be produced showing a lattice substructure of micrometer dimensions (microscale). Such a system is called a metamaterial at the macroscale, because its mechanical characteristics deviate from the characteristics at the microscale. Consequently, a metamaterial is modeled by using additional parameters. These we intend to determine. A homogenization approach based on asymptotic analysis establishes a connection between these different characteristics at micro- and macroscales. A linear elastic first-order theory at the microscale is related to a linear elastic second-order theory at the macroscale. Small strains (and, correspondingly, small gradients) are assumed at both scales. A relation for the parameters at the macroscale is derived by using the equivalence of energy at macro- and microscales within a so-called representative volume element (RVE). The determination of the parameters becomes possible by solving a boundary value problem within the framework of the finite element method. The proposed approach guarantees that the additional parameters vanish if the material is purely homogeneous; in other words, it is fully compatible with conventional homogenization schemes based on spatial averaging techniques. Moreover, the proposed approach is reliable, because it ensures that the obtained additional parameters are insensitive to choices of the RVE consisting of a repetition of smaller RVEs depending upon the intrinsic size of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abali, B.E.: Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Contin. Mech. Thermodyn. 31, 885–894 (2019)

    ADS  MathSciNet  Google Scholar 

  2. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    ADS  Google Scholar 

  3. Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Mod. Process. 1, 4 (2015)

    Google Scholar 

  4. Alibert, J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. ZAMM-J. Appl. Math. Mech. 89(4), 242–256 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)

    ADS  MATH  Google Scholar 

  8. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. 30(5), 1103–1123 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Arabnejad, S., Pasini, D.: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int. J. Mech. Sci. 77, 249–262 (2013)

    Google Scholar 

  10. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Google Scholar 

  11. Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440–454 (2009)

    MATH  Google Scholar 

  12. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69, 195–206 (2015)

    Google Scholar 

  13. Bacigalupo, A.: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6), 1407–1425 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Bacigalupo, A., Paggi, M., Dal Corso, F., Bigoni, D.: Identification of higher-order continua equivalent to a cauchy elastic composite. Mech. Res. Commun. 93, 11–22 (2018)

    Google Scholar 

  15. Barboura, S., Li, J.: Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures. Int. J. Solids Struct. 136, 60–76 (2018)

    Google Scholar 

  16. Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola, F., Eremeyev, V., Porubov, A. (eds.) Advances in Mechanics of Microstructured Media and Structures, vol. 87. Springer, Berlin (2018)

    Google Scholar 

  17. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. 31, 33–45 (2018)

    ADS  MathSciNet  Google Scholar 

  18. Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Berlin (2017)

  19. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24, 212–234 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 374. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  21. Bertram, A.: Compendium on gradient materials including Solids and Fluids. Magdeburg, Berlin (2019). https://www.lkm.tu-berlin.de/fileadmin/fg49/publikationen/bertram/Compendium_on_Gradient_Materials_June_2019.pdf

  22. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–105 (1996)

    MATH  Google Scholar 

  23. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Capobianco, G., Eugster, S.: Time finite element based Moreau-type integrators. Int. J. Numer. Methods Eng. 114(3), 215–231 (2018)

    MathSciNet  Google Scholar 

  25. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams. ZAMM-J. Appl. Math.Mech. 96(10), 1220–1244 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Chen, C., Fleck, N.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50(5), 955–977 (2002)

    ADS  MATH  Google Scholar 

  29. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    MathSciNet  MATH  Google Scholar 

  30. De Angelo, M., Spagnuolo, M., D’Annibale, F., Pfaff, A., Hoschke, K., Misra, A., Dupuy, C., Peyre, P., Dirrenberger, J., Pawlikowski, M.: The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Contin. Mech. Thermodyn. 31(4), 1181–1203 (2019)

    ADS  Google Scholar 

  31. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472(2185), 20150, 790 (2016)

    Google Scholar 

  32. dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. In: Variational models and methods in solid and fluid mechanics, pp. 1–15. Springer, Berlin (2011)

  33. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 465, 2177–2196 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  34. dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Della Corte, A., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F., Müller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31, 851–884 (2018)

    ADS  MathSciNet  Google Scholar 

  35. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications, vol. 4. Springer, Berlin (2009)

    MATH  Google Scholar 

  36. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Google Scholar 

  38. Eugster, S., Hesch, C., Betsch, P., Glocker, C.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Fischer, P., Klassen, M., Mergheim, J., Steinmann, P., Müller, R.: Isogeometric analysis of 2D gradient elasticity. Comput. Mech. 47(3), 325–334 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 7(5), 829 (1999)

    ADS  Google Scholar 

  41. Forest, S., Pradel, F., Sab, K.: Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38(26–27), 4585–4608 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Franciosi, P., El Omri, A.: Effective properties of fiber and platelet systems and related phase arrangements in n-phase heterogenous media. Mech. Res. Commun. 38(1), 38–44 (2011)

    MATH  Google Scholar 

  43. Franciosi, P., Lormand, G.: Using the radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4), 585–606 (2004)

    MATH  Google Scholar 

  44. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 31, 101–132 (2018)

    ADS  MathSciNet  Google Scholar 

  45. Ghosh, S., Lee, K., Moorthy, S.: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132(1–2), 63–116 (1996)

    ADS  MATH  Google Scholar 

  46. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38(3), 377–399 (2005)

    Google Scholar 

  47. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  48. Giorgio, I., Andreaus, U., Lekszycki, T., Corte, A.D.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Giorgio, I., Rizzi, N., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2207), 20170, 636 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Hendy, C.R., Turco, E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct. Eng. 86, 21 (2008)

    Google Scholar 

  52. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A. Math. Phys. Sci. 326(1565), 131–147 (1972)

    ADS  MATH  Google Scholar 

  53. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)

    MATH  Google Scholar 

  54. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Kamensky, D., Bazilevs, Y.: tiGAr: Automating isogeometric analysis with FEniCS. Comput. Methods Appl. Mech. Eng. 344, 477–498 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Kouznetsova, V., Geers, M.G., Brekelmans, W.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)

    MATH  Google Scholar 

  57. Kushnevsky, V., Morachkovsky, O., Altenbach, H.: Identification of effective properties of particle reinforced composite materials. Comput. Mech. 22(4), 317–325 (1998)

    MATH  Google Scholar 

  58. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    ADS  MATH  Google Scholar 

  59. Li, J.: Establishment of strain gradient constitutive relations by homogenization. C. R. Méc. 339(4), 235–244 (2011)

    ADS  MATH  Google Scholar 

  60. Li, J.: A micromechanics-based strain gradient damage model for fracture prediction of brittle materials—Part I: homogenization methodology and constitutive relations. Int. J. Solids Struct. 48(24), 3336–3345 (2011)

    Google Scholar 

  61. Li, J., Zhang, X.B.: A numerical approach for the establishment of strain gradient constitutive relations in periodic heterogeneous materials. Eur. J. Mech.-A/Solids 41, 70–85 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Liu, H., Li, B., Tang, W.: Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in casting process. J. Clean. Prod. 225, 755–770 (2019)

    Google Scholar 

  63. Liu, H., Li, B., Yang, Z., Hong, J.: Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm. J. Manuf. Syst. 43, 375–384 (2017)

    Google Scholar 

  64. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22(10), 1997–2010 (2017)

    MathSciNet  MATH  Google Scholar 

  65. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Google Scholar 

  66. Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    MATH  Google Scholar 

  67. Mróz, Z., Lekszycki, T.: Optimal support reaction in elastic frame structures. Comput. Struct. 14(3–4), 179–185 (1981)

    MATH  Google Scholar 

  68. Nazarenko, L., Stolarski, H., Khoroshun, L., Altenbach, H.: Effective thermo-elastic properties of random composites with orthotropic components and aligned ellipsoidal inhomogeneities. Int. J. Solids Struct. 136, 220–240 (2018)

    Google Scholar 

  69. Nejadsadeghi, N., De Angelo, M., Drobnicki, R., Lekszycki, T., dell’Isola, F., Misra, A.: Parametric experimentation on pantographic unit cells reveals local extremum configuration. Exp. Mech. 59(6), 927–939 (2019)

    Google Scholar 

  70. Nejadsadeghi, N., Placidi, L., Romeo, M., Misra, A.: Frequency band gaps in dielectric granular metamaterials modulated by electric field. Mech. Res. Commun. 95, 96–103 (2019)

    Google Scholar 

  71. Niiranen, J., Khakalo, S., Balobanov, V., Niemi, A.H.: Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng. 308, 182–211 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41(7), 285–296 (1988)

    ADS  Google Scholar 

  73. Peerlings, R., Fleck, N.: Computational evaluation of strain gradient elasticity constants. Int. J. Multisc. Comput. Eng. 2(4), 599–619 (2004)

    Google Scholar 

  74. Peszynska, M., Showalter, R.E.: Multiscale elliptic-parabolic systems for flow and transport. Electron. J. Differ. Equ. (EJDE) 147, 1–30 (2007)

    MATH  Google Scholar 

  75. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    MathSciNet  MATH  Google Scholar 

  77. Pinho-da Cruz, J., Oliveira, J., Teixeira-Dias, F.: Asymptotic homogenisation in linear elasticity. part I: mathematical formulation and finite element modelling. Comput. Mater. Sci. 45(4), 1073–1080 (2009)

    Google Scholar 

  78. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    MathSciNet  MATH  Google Scholar 

  79. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  80. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer, Berlin (2017)

  81. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    MathSciNet  MATH  Google Scholar 

  82. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z. Angew. Math. Phys 67(5), 121 (2016)

    MathSciNet  MATH  Google Scholar 

  83. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin. Mech. Thermodyn. 31, 1143–1163 (2018)

    ADS  MathSciNet  Google Scholar 

  84. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69(3), 56 (2018)

    MathSciNet  MATH  Google Scholar 

  85. Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    MathSciNet  MATH  Google Scholar 

  86. Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM-J. Appl. Math. Mech. 93(12), 914–927 (2013)

    MathSciNet  Google Scholar 

  87. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech.-A/Solids 69, 179–191 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  88. Rudraraju, S., Van der Ven, A., Garikipati, K.: Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput. Methods Appl. Mech. Eng. 278, 705–728 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  89. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 53 (2016)

    MathSciNet  MATH  Google Scholar 

  90. Smyshlyaev, V.P., Cherednichenko, K.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  91. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

  92. Steigmann, D., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  93. Sun, C., Vaidya, R.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)

    Google Scholar 

  94. Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)

    ADS  MATH  Google Scholar 

  95. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    MathSciNet  MATH  Google Scholar 

  96. Tran, T.H., Monchiet, V., Bonnet, G.: A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int. J. Solids Struct. 49(5), 783–792 (2012)

    Google Scholar 

  97. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Google Scholar 

  98. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Google Scholar 

  99. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B: Eng. 118, 1–14 (2017)

    Google Scholar 

  100. Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 105 (2018)

    MathSciNet  MATH  Google Scholar 

  101. Yang, H., Müller, W.H.: Computation and experimental comparison of the deformation behavior of pantographic structures with different micro-geometry under shear and torsion. J. Theoret. Appl. Mech. 57, 421–434 (2019)

    Google Scholar 

  102. Zohdi, T.I.: Homogenization methods and multiscale modeling. Encyclopedia of Computational Mechanics Second Edition pp. 1–24 (2017)

Download references

Acknowledgements

We express our gratitude to Emilio Barchiesi, Ivan Giorgio, and Francesco dell’Isola for valuable discussions. We also thank David Kamensky for the help of implementation of isogeometric FEM in FEniCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Timofeev.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Asymptotic solution for the displacement field

Appendix: Asymptotic solution for the displacement field

The asymptotic solution for an RVE is derived. Specifically, the solutions of Eqs. (24), (25), and (26) are shown.

We start with Eq. (24). Because \(C_{ijkl}^\text {m}\) is a function of \(\varvec{y}\), the only possible general solution of Eq. (24) is to restrict \(\overset{0}{u}_i({\varvec{X}})\), since it is \(\varvec{y}\)-periodic and has a bounded gradient. The solution in the order of \(\epsilon ^{-2}\) can be given as:

$$\begin{aligned} \overset{0}{u}_i = \overset{0}{u}_i({\varvec{X}}). \end{aligned}$$
(43)

Note that \(\overset{0}{u}_i({\varvec{X}})\) depends only on the macroscopic coordinates. It is assumed to be the known macroscopic displacement \(\overset{0}{u}_i({\varvec{X}}) =u^\text {M}_i({\varvec{X}})\). By substituting Eq. (43) into Eq. (25), by introducing \(\varphi _{abc}=\varphi _{abc}(\varvec{y})\), for the inverse operation, we obtain

$$\begin{aligned}&\frac{\partial C_{ijab}^\text {m}}{\partial y_j} \frac{\partial \overset{0}{u}_a}{\partial X_b} = - \frac{\partial }{\partial y_j} \bigg ( C_{ijkl}^\text {m} \frac{\partial \overset{1}{u}_k}{\partial y_l} \bigg ), \nonumber \\&\frac{\partial C_{ijab}^\text {m} }{\partial y_j} = - \frac{\partial }{\partial y_j} \bigg ( C_{ijkl}^\text {m} \frac{\partial \varphi _{abk} }{\partial y_l} \bigg ), \nonumber \\&\frac{\partial }{\partial y_j} \bigg ( C_{ijkl}^\text {m} \Big ( \frac{\partial \varphi _{abk}}{\partial y_l} + \delta _{ak} \delta _{bl} \Big ) \bigg ) = 0. \end{aligned}$$
(44)

Then, the general solution of Eq. (25) can be given as:

$$\begin{aligned} \overset{1}{u}_i = \varphi _{abi} \overset{0}{u}_{a,b} + \overset{1}{\bar{u}}_i({\varvec{X}}), \end{aligned}$$
(45)

where \(\overset{1}{\bar{u}}_i =\overset{1}{\bar{u}}_i({\varvec{X}})\) are integration constants in \(\varvec{y}\).

Substitution of Eqs. (43) and (45) (with \(\overset{1}{\bar{u}}_i({\varvec{X}}) = 0\)) into Eq. (26) leads to

$$\begin{aligned} C_{ijkl}^\text {m} \overset{0}{u}_{k,lj} + C_{ijkl}^\text {m} \frac{\partial \varphi _{abk}}{\partial y_l} \overset{0}{u}_{a,bj} + \frac{\partial }{\partial y_j} \big ( C_{ijkl}^\text {m} \varphi _{abk} \big ) \overset{0}{u}_{a,bl} + \frac{\partial }{\partial y_j} \Big ( C_{ijkl}^\text {m} \frac{\partial \overset{2}{u}_k}{\partial y_l} \Big ) + f_i = 0. \end{aligned}$$
(46)

Please note that the body force \(\varvec{f}\) keeps unchanged on the micro- and macroscales. We recall the governing equation in the macroscale which reads [3]:

$$\begin{aligned}&\Bigg (\frac{\partial w^\text {M}}{\partial u_{i,j}^\text {M}} - \Big (\frac{\partial w^\text {M}}{\partial u_{i,jk}^\text {M}}\Big )_{,k} \Bigg )_{,j} + f_i= 0, \nonumber \\&C^\text {M}_{ijkl} u^\text {M}_{k,lj} - D_{ijklmn}^\text {M} u_{l,mnkj}^\text {M} + f_i= 0. \end{aligned}$$
(47)

By neglecting the fourth-order term in Eq. (47) and by using \(\overset{0}{u}_i({\varvec{X}}) =u^\text {M}_i({\varvec{X}})\), we obtain

$$\begin{aligned} f_i = -C^\text {M}_{ijkl} u^\text {M}_{k,lj} = -C^\text {M}_{ijkl} \overset{0}{u}_{k,lj}. \end{aligned}$$
(48)

Substituting Eq. (48) into Eq. (46) leads to

$$\begin{aligned} \frac{\partial }{\partial y_j} \Big ( C_{ijkl}^\text {m} \frac{\partial \overset{2}{u}_k}{\partial y_l} \Big ) = -\Big ( C_{icab}^\text {m} + C_{ijkl}^\text {m} \frac{\partial \varphi _{abk}}{\partial y_l} \delta _{jc} + \frac{\partial }{\partial y_j} \big ( C_{ijkl}^\text {m} \varphi _{abk} \big ) \delta _{lc} - C^\text {M}_{icab} \Big ) \overset{0}{u}_{a,bc}. \end{aligned}$$
(49)

Because \(\overset{0}{u}_{a,bc}\) is constant in \(\varvec{y}\), we can introduce \(\psi _{abci}\) depending on \(\varvec{y}\) and decompose as follows:

$$\begin{aligned} \overset{2}{u}_i = \psi _{abci} \overset{0}{u}_{a,bc} + \overset{2}{\bar{u}}_i({\varvec{X}}), \end{aligned}$$
(50)

where \(\psi _{abcd}=\psi _{abcd}(\varvec{y})\) and \(\overset{2}{\bar{u}}_i({\varvec{X}})\) are integration constants in \(\varvec{y}\). By substituting Eq. (50) (with \(\overset{2}{\bar{u}}_i({\varvec{X}}) = 0\)) into Eq. (49), it is found that the tensor \(\psi _{abcd}\) must fulfill the following equation:

$$\begin{aligned} \frac{\partial }{\partial y_j} \bigg ( C_{ijkl}^\text {m} \Big ( \frac{\partial \psi _{abck}}{\partial y_l} + \varphi _{abk} \delta _{lc} \big ) \bigg ) + C_{ickl}^\text {m} \Big ( \frac{\partial \varphi _{abk}}{\partial y_l} + \delta _{ka} \delta _{lb} \Big ) - {{C}}_{icab}^\text {M} = 0, \end{aligned}$$
(51)

such that Eq. (20) provides

$$\begin{aligned} u^\text {m}_i({\varvec{X}},\varvec{y}) = \overset{0}{u}_i({\varvec{X}}) + \epsilon \varphi _{abi}(\varvec{y}) \overset{0}{u}_{a,b}({\varvec{X}}) + \epsilon ^2 \psi _{abci}(\varvec{y}) \overset{0}{u}_{a,bc}({\varvec{X}}) + \cdots . \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Abali, B.E., Timofeev, D. et al. Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Continuum Mech. Thermodyn. 32, 1251–1270 (2020). https://doi.org/10.1007/s00161-019-00837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00837-4

Keywords

Navigation