Skip to main content
Log in

Nonlinear shallow-water solutions using the weak temperature gradient approximation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A form of the weak temperature gradient (WTG) approximation, in which the temperature tendency and advection terms are neglected in the temperature equation so that the equation reduces to a diagnostic balance between heating and vertical motion, is applied to a two-dimensional nonlinear shallow-water model with the heating (mass source) parameterized as a Newtonian relaxation on the temperature (layer thickness) towards a prescribed function of latitude and longitude, containing an isolated maximum or minimum, as in the classic linear Gill problem. In this model, temperature variations are retained in the Newtonian heating term, so that it is not a pure WTG system. It contains no free unbalanced modes, but reduces to the Gill model in the steady linear limit, so that steady solutions may be thought of as containing components corresponding to unbalanced modes in the same sense as the latter. The equations are solved numerically and are compared with full shallow-water solutions in which the WTG approximation is not made. Several external parameters are varied, including the strength, location, sign, and horizontal scale of the mass source, the Rayleigh friction coefficient, and the time scale for the relaxation on the mass field. Indices of the Walker and Hadley circulations are examined as functions of these external parameters. Differences between the WTG solutions and those from the full shallow-water system are small over most of the parameter regime studied, which includes time-dependent as well as steady solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa A. (2004) The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525

    Article  ADS  Google Scholar 

  2. Boonkkamp J.H.M.T.T., Verwer J.G. (1987) On the odd-even hopscotch scheme for the numerical intergration of time dependent partial differential equations. Appl. Numer. Math. 3, 183–193

    Article  MATH  MathSciNet  Google Scholar 

  3. Bretherton C.S., Sobel A.H. (2003) The Gill model and the weak temperature gradient approximation. J. Atmos. Sci. 60, 451–460

    Article  MathSciNet  ADS  Google Scholar 

  4. Browning G.L., Kreiss H.-O. (1997) The role of gravity waves in slowly varying in time mesoscale motions. J. Atmos. Sci. 54, 1166–1184

    Article  MathSciNet  ADS  Google Scholar 

  5. Browning G.L., Kreiss H.-O., Schubert W.H. (2000) The role of gravity waves in slowly varying in time tropospheric motions near the equator. J. Atmos. Sci. 57, 4008–4019

    Article  MathSciNet  ADS  Google Scholar 

  6. Chan J.C.-L. (2005) Physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 37, 99–128

    Article  MATH  ADS  Google Scholar 

  7. Chiang J.C.-H., Sobel A.H. (2002) Tropical temperature variations caused by ENSO and their influence on the remote tropical climate. J. Clim. 15, 2616–2631

    Article  ADS  Google Scholar 

  8. Durran D.R. (1999) Numerical methods for Wave Equations in Geophysical Fluid Dynamics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  9. Fang M., Tung K.K. (1996) A simple model of nonlinear Hadley circulation with an ITCZ: analytic and numerical solutions. J. Atmos. Sci. 53, 1241–1261

    Article  ADS  Google Scholar 

  10. Fang M., Tung K.K. (1997) The dependence of the Hadley circulation on the thermal relaxation Time. J. Atmos. Sci. 54, 1379–1384

    Article  ADS  Google Scholar 

  11. Fang M., Tung K.K. (1999) Time-dependent nonlinear Hadley circulation. J. Atmos. Sci. 56, 1797–1807

    Article  ADS  Google Scholar 

  12. Gill A. (1980) Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteor. Soc. 106, 447–462

    Article  ADS  Google Scholar 

  13. Gill A., Phlips P.J. (1986) Nonlinear effects on heat-induced circulation of the tropical atmosphere. Q. J. R. Met. Soc. 112, 69–91

    Article  ADS  Google Scholar 

  14. Held I.M., Hoskins B.J. (1985) Large-scale eddies and the general circulation of the troposphere. Adv. Geophys. 28, 3–31

    Article  ADS  Google Scholar 

  15. Hoskins B.J., McIntyre M.E., Robertson A.W. (1985) On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteor. Soc. 111, 877–946

    Article  ADS  Google Scholar 

  16. Hsu C.J., Plumb R.A. (2000) Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J. Atmos. Sci. 57, 1255–1276

    Article  ADS  Google Scholar 

  17. Lindzen R.S., Richard S., Hou A.Y. (1988) Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci. 45, 2416–2427

    Article  ADS  Google Scholar 

  18. Majda A.J., Klein R. (2003) Systematic multiscale models for the tropics. J. Atmos. Sci. 60, 393–408

    Article  ADS  Google Scholar 

  19. Neelin J.D. (1988) A simple model for the surface stress and lowlevel flow in the tropical atmosphere driven by prescribed heating. Q. J. R. Meteor. Soc. 114, 747–770

    Article  ADS  Google Scholar 

  20. Plumb R.A., Hou A.Y. (1992) The response of a zonally symmetric atmosphere to subtropical thermal forcing: threshold behavior. J. Atmos. Sci. 49, 1790–1799

    Article  ADS  Google Scholar 

  21. Polvani L.M., Sobel A.H.(2002) The Hadley circulation and the weak temperature gradient approximation. J. Atmos. Sci. 59, 1744–1752

    Article  MathSciNet  ADS  Google Scholar 

  22. Raymond D.J., Zeng X. (2005) Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Q. J. R. Meteor. Soc. 131, 1301–1320

    Article  Google Scholar 

  23. Schneider E.K. (1977) Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci. 34, 280–296

    Article  ADS  Google Scholar 

  24. Schneider E.K. (1987) A simplified model of the modified hadley circulation. J. Atmos. Sci. 44, 3311–3328

    Article  ADS  Google Scholar 

  25. Schneider E.K., Lindzen R.S. (1977) Axially symmetric steady-state models of the basic state for instability and climate studies. Part I. Linearized Calculations. J. Atmos. Sci. 34, 263–279

    Article  ADS  Google Scholar 

  26. Sobel A.H., Bretherton C.S. (2000) Modeling tropical precipitation in a single column. J. Climiate 13, 4378–4392

    Article  ADS  Google Scholar 

  27. Sobel A.H., Nilsson J. Polvani L.M. (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Additional information

Communicated by R. Klein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Sobel, A.H. Nonlinear shallow-water solutions using the weak temperature gradient approximation. Theor. Comput. Fluid Dyn. 20, 469–484 (2006). https://doi.org/10.1007/s00162-006-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0028-8

Keywords

PACS

Navigation