Skip to main content
Log in

Smagorinsky constant in LES modeling of anisotropic MHD turbulence

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Turbulent fluctuations in magnetohydrodynamic (MHD) flows can become strongly anisotropic or even quasi-2D under the action of an applied magnetic field. We investigate this phenomenon in the case of low magnetic Reynolds numbers. It has been found in earlier DNS and LES of homogeneous turbulence that the degree of anisotropy is predominantly determined by the value of the magnetic interaction parameter and only slightly depends on the Reynolds number, type of large-scale dynamics, and the length scale. Furthermore, it has been demonstrated that the dynamic Smagorinsky model is capable of self-adjustment to the effects of anisotropy. In this paper, we capitalize on these results and propose a simple and effective generalization of the traditional non-dynamic Smagorinsky model to the case of anisotropic MHD turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson P.A. (2001). An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Moreau R. (1990). Magnetohydrodynamics. Kluwer, Dordrecht

    MATH  Google Scholar 

  3. Schumann U. (1976). Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field. J. Fluid Mech. 74: 31–58

    Article  MATH  ADS  Google Scholar 

  4. Alemany A., Moreau R., Sulem P.L. and Frisch U. (1979). Influence of an external magnetic field on homogeneous MHD turbulence. J. Mech. 18: 277–313

    Google Scholar 

  5. Zikanov O. and Thess A. (1998). Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358: 299–333

    Article  MATH  ADS  Google Scholar 

  6. Vorobev A., Zikanov O., Davidson P.A. and Knaepen B. (2005). Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17: 125105

    Article  ADS  MathSciNet  Google Scholar 

  7. Thess, A., Zikanov, O.: On the transition from two-dimensional to three-dimensional MHD turbulence. In: Proc. of 2004 CTR summer program. Stanford University, pp. 63–74 (2004)

  8. Sommeria J. and Moreau R. (1982). Why, how and when MHD turbulence becomes two-dimensional. J. Fluid Mech. 118: 507–518

    Article  MATH  ADS  Google Scholar 

  9. Hinze J.O. (1959). Turbulence. McGraw-Hill, New York

    Google Scholar 

  10. Knaepen B. and Moin P. (2004). Large-eddy simulation of conductive flows at low magnetic Reynolds number. Phys. Fluids 16: 1255

    Article  ADS  MathSciNet  Google Scholar 

  11. Germano M., Piomelli U., Moin P. and Cabot W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3: 1760

    Article  MATH  ADS  Google Scholar 

  12. Lilly D.K. (1992). A proposed modification to the Germano subgridscale closure model. Phys. Fluids A 4: 633

    Article  ADS  Google Scholar 

  13. Pope S.B. (2000). Turbulent Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Jiménez, J., Moser, R.D.: AIAA Paper 98–2891 (1998)

  15. Pope S.B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6: 35

    Article  ADS  Google Scholar 

  16. Zikanov, O., Vorobev, A., Thess, A., Davidson, P.A., Knaepen, B.: Anisotropy of MHD turbulence at low magnetic Reynolds number. In: Proc. of 2004 CTR summer program. Stanford University, pp. 35–46 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zikanov.

Additional information

Communicated by R.D. Moser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobev, A., Zikanov, O. Smagorinsky constant in LES modeling of anisotropic MHD turbulence. Theor. Comput. Fluid Dyn. 22, 317–325 (2008). https://doi.org/10.1007/s00162-007-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0064-z

Keywords

PACS

Navigation