Skip to main content
Log in

Large-eddy simulation of flow separation on an airfoil at a high angle of attack and Re = 105 using Cartesian grids

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Incompressible flow separating from the upper surface of an airfoil at an 18° angle of attack and a Reynolds number of Re = 105, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson, L., Cokljat, D., Fröhlich, J., Leschziner, M., Mellen, C., Rodi, W. (eds.): LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil: Results of the Projects LESFOIL Supported by the Europan Union 1998–2001. Springer, Berlin (2003)

  2. Drela, M.: XFOIL 6.94. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. http://raphael.mit.edu/xfoil, Version of 18.12.2001

  3. Stone H.L. (1968). Iterative solutions of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5: 530–558

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Meneveau C., Lund T.S. and Cabot W.H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385

    Article  MATH  ADS  Google Scholar 

  5. Evans, G.: Grobstruktursimulation der abgelösten Strömung um ein angestelltes Tragflügelprofil. Dissertation, Fachgebiet Strömungsmechanik, Technische Universität München (2004)

  6. Germano M., Piomelli U., Moin P. and Cabot W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3: 1760–1765

    Article  MATH  ADS  Google Scholar 

  7. Gullbrand J., Bai X.S. and Fuchs L. (1997). High-order boundary corrections for computation of turbulent flows. In: Taylor, C. and Cross, J.T. (eds) Numerical Methods in Laminar and Turbulent Flow, vol. 10., pp 141–152. Pineridge Press, Swansea

    Google Scholar 

  8. Tremblay, F.: Direct and large-eddy simulation of flow around a circular cylinder at subcritical Reynolds numbers. PhD thesis, Fachgebiet Strömungsmechanik, Technische Universität München (2001)

  9. Jovičić N. and Breuer M. (2004). Separated flow past an airfoil at high angle of attack. In: Wagner, S., Hanke, W., Bode, A. and Durst, F. (eds) High Performance Computing in Science and Engineering., pp 93–105. Springer, Berlin

    Google Scholar 

  10. Kindler, K., Kreplin, H.-P., Ronneberger, D.: Experimentelle Untersuchung kohärenter Strukturen in kritischen Tragflügelströmungen. Technical report DLR-IB 224-03 A 11, Institut für Aerodynamik und Strömungstechnik, DLR Göttingen (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Eisenbach.

Additional information

Communicated by R.D. Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenbach, S., Friedrich, R. Large-eddy simulation of flow separation on an airfoil at a high angle of attack and Re = 105 using Cartesian grids. Theor. Comput. Fluid Dyn. 22, 213–225 (2008). https://doi.org/10.1007/s00162-007-0072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0072-z

Keywords

PACS

Navigation