Skip to main content
Log in

Low-Prandtl-number Bénard–Marangoni convection in a vertical magnetic field

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of a homogeneous magnetic field on surface-tension-driven Bénard convection is studied by means of direct numerical simulations. The flow is computed in a rectangular domain with periodic horizontal boundary conditions and the free-slip condition on the bottom wall using a pseudospectral Fourier–Chebyshev discretization. Deformations of the free surface are neglected. Two- and three-dimensional flows are computed for either vanishing or small Prandtl number, which are typical of liquid metals. The main focus of the paper is on a qualitative comparison of the flow states with the non-magnetic case, and on the effects associated with the possible near-cancellation of the nonlinear and pressure terms in the momentum equations for two-dimensional rolls. In the three-dimensional case, the transition from a stationary hexagonal pattern at the onset of convection to three-dimensional time-dependent convection is explored by a series of simulations at zero Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G.K.: On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177–190 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bestehorn M.: Phase and amplitude instabilities for Bénard–Marangoni convection in fluid layers with large aspect ratio. Phys. Rev. E 48, 3622–3634 (1993)

    Article  MathSciNet  Google Scholar 

  3. Boeck T., Thess A.: Inertial Bénard–Marangoni convection. J. Fluid Mech. 350, 149–175 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boeck T., Thess A.: Turbulent Bénard–Marangoni convection: results of two-dimensional simulations. Phys. Rev. Lett. 80, 1216–1219 (1998)

    Article  Google Scholar 

  5. Boeck T., Thess A.: Bénard–Marangoni convection at low Prandtl number. J. Fluid Mech. 399, 251–275 (1999)

    Article  MATH  Google Scholar 

  6. Boeck T., Vitanov N.: Low-dimensional chaos in zero-Prandtl-number Bénard–Marangoni convection. Phys. Rev. E 65, 037203 (2002)

    Article  MathSciNet  Google Scholar 

  7. Busse F.H., Clever R.M.: An asymptotic model of two-dimensional convection in the limit of low Prandtl number. J. Fluid Mech. 102, 75–83 (1981)

    Article  MATH  Google Scholar 

  8. Chiffaudel A., Fauve S., Perrin B.: Viscous and inertial convection at low Prandtl number: experimental study. Europhys. Lett. 4(5), 555–560 (1987)

    Article  Google Scholar 

  9. Dauby P.C., Lebon G., Colinet P., Legros J.C.: Hexagonal Marangoni convection in a rectangular box with slippery walls. Q. J. Mech. Appl. Math. 46(4), 683–707 (1993)

    Article  MATH  Google Scholar 

  10. Davidson P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  11. Davis S.H.: Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403–435 (1987)

    Article  MATH  Google Scholar 

  12. Eckert K., Bestehorn M., Thess A.: Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 358, 149–197 (1998)

    MathSciNet  Google Scholar 

  13. Ginde R.M., Gill W.N., Verhoeven J.D.: An experimental study of Rayleigh–Bénard convection in liquid tin. Chem. Eng. Comm. 82, 223–228 (1989)

    Article  Google Scholar 

  14. Golovin A.A., Nepomnyashchy A.A., Pismen L.M.: Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid–gas system with deformable interface. J. Fluid Mech. 341, 317–341 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hashim I., Wilson S.K.: The effect of a uniform vertical magnetic field on the linear growth rates of steady Marangoni convection in a horizontal layer of conducting fluid. Int. J. Heat Mass Transf. 42, 525–533 (1999)

    Article  MATH  Google Scholar 

  16. Kek V., Müller U.: Low Prandtl number convection in layers heated from below. Int. J. Heat Mass Transf. 36(11), 2795–2804 (1993)

    Article  Google Scholar 

  17. Krasnov D., Zienicke E., Zikanov O., Boeck T., Thess A.: Numerical study of the instability of the Hartmann layer. J. Fluid Mech. 504, 183–211 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuhlmann H.C., Rath H.J.: Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges. J. Fluid Mech. 247, 247–274 (1993)

    Article  MATH  Google Scholar 

  19. Levenstam M., Amberg G.: Hydrodynamical instabilities of thermocapillary flow in a half-zone. J. Fluid Mech. 297, 357–372 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miladinova S.P., Slavtchev S.G.: Weakly nonlinear Marangoni instability in the presence of a magnetic field: effect of the boundary conditions and magnetic Prandtl number. Fluid Dyn. Res. 28, 111–125 (2001)

    Article  Google Scholar 

  21. Nield D.A.: Surface tension and buoyancy effects in the cellular convection of an electrically conducting liquid in a magnetic field. Z. Angew. Math. Phys. 17(1), 131–139 (1966)

    Article  Google Scholar 

  22. Proctor M.R.E.: Inertial convection at low Prandtl number. J. Fluid Mech. 82(1), 97–114 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pumir A., Blumenfeld L.: Heat transport in a liquid layer locally heated on its free surface. Phys. Rev. E 54(5), R4528–R4531 (1996)

    Article  Google Scholar 

  24. Thess A., Bestehorn M.: Planform selection in Bénard–Marangoni convection: l hexagons versus g hexagons. Phys. Rev. E 52(6), 6358–6367 (1995)

    Article  Google Scholar 

  25. Thess, A., Nitschke, K.: Thermocapillary instabilities in the presence of a homogeneous magnetic field. In: Proceedings of the First European Symposium Fluids in Space. Ajaccio, France (18–22 November 1991)

  26. Thess A., Nitschke K.: On Bénard-Marangoni convection in the presence of a magnetic field. Phys. Fluids 7(5), 1176–1178 (1995)

    Article  MATH  Google Scholar 

  27. Thual O.: Zero-Prandtl-number convection. J. Fluid Mech. 240, 229–258 (1992)

    Article  MATH  Google Scholar 

  28. VanHook S.J., Schatz M.F., Swift J.B., McCormick W.D., Swinney H.L.: Long-wavelength surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 345, 45–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wilson S.K.: The effect of a uniform magnetic field on the onset of steady Bénard-Marangoni convection in a layer of conducting fluid. J. Eng. Math. 27, 161–188 (1993)

    Article  MATH  Google Scholar 

  30. Wilson S.K.: The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with prescribed heat flux at its lower boundary. Phys. Fluids 6(11), 3591–3600 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Boeck.

Additional information

Communicated by O. Zikanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeck, T. Low-Prandtl-number Bénard–Marangoni convection in a vertical magnetic field. Theor. Comput. Fluid Dyn. 23, 509–524 (2009). https://doi.org/10.1007/s00162-009-0138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0138-1

Keywords

PACS

Navigation