Skip to main content
Log in

Transonic velocity fluctuations simulated using extremum diminishing uncertainty quantification based on inverse distance weighting

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

For reliable computational predictions of transonic flows, it is important to resolve the significant effects of physical variations on the shock wave locations. The resulting discontinuities in probability space require extremum diminishing uncertainty quantification to avoid overshoots and undershoots in the response surface approximation. In this paper, the extremum diminishing concept in probability space is extended to infinite parameter domains using inverse distance weighting interpolation of deterministic samples. Based on results for three analytical test functions, the combination of Halton sampling and power parameter limit value c → ∞ is selected. The approach is employed to model spatial-free-stream velocity fluctuations in the highly sensitive transonic AGARD 445.6 wing test case in an up to ten-dimensional probability space. The 0.5% input variations are amplified to a coefficient of variation for the wave drag of cvD = 9.58% in combination with an increase of the mean drag by 1.75% compared to the deterministic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I., Tempone R., Zouraris G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška I., Nobile F., Tempone R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartier P.M., Keller C.P.: Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 22, 795–799 (1996)

    Article  Google Scholar 

  4. Bowen G.J., Revenaugh J.: Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 39, 1299 (2003)

    Article  Google Scholar 

  5. Chorin A.J., Marsden J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1979)

    Book  MATH  Google Scholar 

  6. Cressman G.P.: An operational objective analysis system. Mon. Weather Rev. 87, 367–374 (1959)

    Article  Google Scholar 

  7. Deb M., Babuška I., Oden J.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)

    Article  MATH  Google Scholar 

  8. Ghanem R.G., Spanos P.: Stochastic Finite Elements: A Spectral Approach. Springer–Verlag, New York (1991)

    Book  MATH  Google Scholar 

  9. Ghanem R.: Ingredients for a general purpose stochastic finite elements implementation. Comput. Method. Appl. M. 168, 19–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hammersley J.M., Handscomb D.C.: Monte Carlo Methods. Methuen’s monographs on applied probability and statistics. Fletcher & Son Ltd., Norwich (1964)

    Google Scholar 

  11. Hosder, S., Walters, R.W. Perez, R.: A non–intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA–2006–891 (2006)

  12. Hosder, S., Walters, R.W., Balch, M., Efficient sampling for non–intrusive polynomial chaos applications with multiple uncertain input variables. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, AIAA–2007–1939 (2007)

  13. Jameson A.: Positive schemes and shock modelling for compressible flows. Int. J. Num. Meth. Fluids 20, 743–776 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koobus B., Farhat C.: Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes. Comput. Methods Appl. Mech. Engrg. 170, 103–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Loève M.: Probability Theory, fourth ed. Springer–Verlag, New York (1977)

    MATH  Google Scholar 

  16. Loeven G.J.A., Bijl H.: Probabilistic collocation used in a two–step approach for efficient uncertainty quantification in computational fluid dynamics. CMES 36, 193–212 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Le Maître O.P., Knio O.M., Najm H.N., Ghanem R.G.: A stochastic projection method for fluid flow: I. Basic formulation. J. Comput. Phys. 173, 481–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Maître O.P., Reagan M.T., Najm H.N., Ghanem R.G., Knio O.M.: A stochastic projection for fluid flow: II. Random process. J. Comput. Phys. 181, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Maître O.P., Najm H.N., Ghanem R.G., Knio O.M.: Multi–resolution analysis of Wiener–type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathelin L., Hussaini M.Y., Zang T.A., Bataille F.: Uncertainty propagation for a turbulent, compressible nozzle flow using stochastic methods. AIAA J. 42, 1669–1676 (2004)

    Article  Google Scholar 

  21. Mathelin L., Hussaini M.Y., Zang Th.A.: Stochastic approaches to uncertainty quantification in CFD simulations. Num. Alg. 38, 209–236 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Mathelin L., Le Maître O.: Dual–based a posteriori error estimate for stochastic finite element methods. Comm. App. Math. Comput. Sci. 2, 83–115 (2007)

    Article  MATH  Google Scholar 

  23. Melchers R.E.: Structural Reliability: Analysis and Prediction. Wiley, New York (1987)

    Google Scholar 

  24. Najm H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  Google Scholar 

  25. Nellner P.-Ch., Zierep J.: A local solution method for shock boundary–layer interaction on a swept wing. Acta Mech. 101, 45–57 (1993)

    Article  MATH  Google Scholar 

  26. Okabe A., Boots B., Sugihara K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester, New York (1992)

    MATH  Google Scholar 

  27. Reagan M.T., Najm H.N., Ghanem R.G., Knio O.M.: Uncertainty quantification in reacting–flow simulations through non–intrusive spectral projection. Combust. Flame 132, 545–555 (2003)

    Article  Google Scholar 

  28. Shepard, D.: A two–dimensional interpolation function for irregularly–spaced data. In: Proceedings of the 1968 ACM National Conference, 517–524 (1968)

  29. Tatang, M.A.: Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems. PhD thesis, MIT, Cambridge (1995)

  30. Wan X., Karniadakis G.E.: An adaptive multi–element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiener N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  32. Witteveen J.A.S., Bijl H.: A monomial chaos approach for efficient uncertainty quantification in nonlinear problems. SIAM J. Sci. Comput. 30, 1296–1317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Witteveen J.A.S., Bijl H.: Effect of randomness on multi-frequency aeroelastic responses resolved by unsteady adaptive stochastic finite elements. J. Comput. Phys. 228, 7025–7045 (2009)

    Article  MATH  Google Scholar 

  34. Witteveen J.A.S., Loeven G.J.A., Bijl H.: An adaptive stochastic finite elements approach based on Newton–Cotes quadrature in simplex elements. Comput. Fluids 38, 1270–1288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Witteveen J.A.S., Bijl H.: A TVD uncertainty quantification method with bounded error applied to transonic airfoil flutter. Commun. Comput. Phys. 6, 406–432 (2009)

    Article  MathSciNet  Google Scholar 

  36. Xiu D., Karniadakis G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu D., Lucor D., Su C.,-H., Karniadakis G.E.: Stochastic modeling of flow–structure interactions using generalized polynomial chaos. J. Fluid. Eng. 124, 51–59 (2002)

    Article  Google Scholar 

  38. Xiu D., Karniadakis G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu D.: Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys. 5, 242–272 (2009)

    MathSciNet  Google Scholar 

  40. Yates, E. Jr.: AGARD Standard Aeroelastic Configurations for Dynamic Response. Candidate Configuration I.–Wing 445.6. Technical Memorandum 100492, NASA (1987)

  41. Van Zuijlen A.H., De Boer A., Bijl H.: Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations. J. Comput. Phys. 224, 414–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. S. Witteveen.

Additional information

Communicated by Zang.

The presented work is supported by the NODESIM–CFD project (Non-Deterministic Simulation for CFD based design methodologies); a collaborative project funded by the European Commission, Research Directorate–General in the 6th Framework Programme, under contract AST5–CT–2006–030959.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witteveen, J.A.S., Bijl, H. Transonic velocity fluctuations simulated using extremum diminishing uncertainty quantification based on inverse distance weighting. Theor. Comput. Fluid Dyn. 26, 459–479 (2012). https://doi.org/10.1007/s00162-011-0233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0233-y

Keywords

Navigation