Skip to main content
Log in

Stochastic growth of cloud droplets by collisions during settling

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the last stage of droplet growth in clouds which leads to drizzle formation, larger droplets begin to settle under gravity and collide and coalesce with smaller droplets in their path. In this article, we shall deal with the simplified problem of a large drop settling amidst a population of identical smaller droplets. We present an expression for the probability that a given large drop suffers a given number of collisions, for a general statistically homogeneous distribution of droplets. We hope that our approach will serve as a valuable tool in dealing with droplet distribution in real clouds, which has been found to deviate from the idealized Poisson distribution due to mechanisms such as inertial clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grabowski, W.W., Wang, L.-P.: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293–324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Siebert, H., Gerashchenko, S., Gylfason, A., Lehmann, K., Collins, L.R., Shaw, R.A., Warhaft, Z.: Towards understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements. Atmos. Res. 42, 426–437 (2010)

    Article  Google Scholar 

  3. Devenish, B.J., Bartello, P., Brenguier, J.-L., Collins, L.R., Grabowski, W.W., IJzermans, R.H.A., Malinowski, S.P., Reeks, M.W., Vassilicos, J.C., Wang, L.-P., Warhaft, Z.: Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012)

    Article  Google Scholar 

  4. Shaw, R.A.: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183–227 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rogers, R.R., Yau, M.K.: A Short Course in Cloud Physics. Butterworth-Heinemann, Burlington (1989)

    Google Scholar 

  6. Szumowski, M.J., Rauber, R.M., Ochs III, H.T., Miller, L.J.: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci. 54, 369–385 (1997)

    Article  Google Scholar 

  7. Berry, E.X., Reinhardt, R.L.: An analysis of cloud drop growth by collection: Part 1. Double distributions. J. Atmos. Sci. 31, 1814–1824 (1974)

    Article  Google Scholar 

  8. Riemer, N., Wexler, A.S.: Droplets to drops by turbulent coagulation. J. Amos. Sci. 62, 1962–1975 (2005)

    Google Scholar 

  9. Seifert, A., Onishi, R.: Turbulence effects on warm-rain formation in precipitating shallow convection revisited. Atmos. Chem. Phys. 16, 1212712141 (2016)

    Article  Google Scholar 

  10. Wood, R.: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res. 111, D21205 (2006)

    Article  Google Scholar 

  11. Gillespie, D.T.: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci. 32, 1496–1510 (1972)

    Article  Google Scholar 

  12. Telford, J.W.: A new aspect of coalescence theory. J. Meteorol. 12, 436–444 (1955)

    Article  Google Scholar 

  13. Twomey, S.: Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci. 21, 553–557 (1964)

    Article  Google Scholar 

  14. Alfonso, L., Raga, G.B., Baumgardner, D.: The validity of the kinetic collection equation revisited Part 3: Solgel transition under turbulent conditions. Atmos. Chem. Phys. 13, 521529 (2013)

    Article  Google Scholar 

  15. Robertson, D.: Monte Carlo simulations of drop growth by accretion. J. Amos. Sci. 62, 1962–1975 (2005)

    Google Scholar 

  16. Siddiqui, R., Quine, B.M.: Continuous and stochastic methods for modeling rain drop growth in clouds. Int. J. Water Resour. Environ. Eng. 8(3), 32–38 (2016)

    Article  Google Scholar 

  17. Uchida, E., Ohta, S.: A simulation approach to the formation of precipitation particles using the Monte-Carlo method. J. Meteorol. Soc. Jpn. 47, 279–291 (1969)

    Article  Google Scholar 

  18. Wang, L.-P., Xue, Y., Ayala, O., Grabowski, W.W.: Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmos. Res. 82, 416–432 (2006)

    Article  Google Scholar 

  19. Kostinski, A.B., Shaw, R.A.: Fluctuations and luck in droplet growth by coalescence. Bull. Am. Meteorol. Soc. 86, 235–244 (2005)

    Article  Google Scholar 

  20. Kostinski, A.B., Shaw, R.A.: Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech. 12, 389–398 (2001)

    MATH  Google Scholar 

  21. Pinsky, M., Khain, A.: Fine structure of cloud droplet concentration as seen from the Fast-FSSP measurements. Part II: results of in situ observations. J. Appl. Meteorol. 42, 65–73 (2003)

    Article  Google Scholar 

  22. Jameson, A.R., Kostinski, A.B.: Fluctuation properties of precipitation. Part VI: observations of hyperfine clustering and drop size distribution structures in three-dimensional rain. J. Atmos. Sci. 57, 373–388 (2000)

    Article  Google Scholar 

  23. Lehmann, K., Siebert, H., Wendisch, M., Shaw, R.A.: Evidence for inertial droplet clustering in weakly turbulent clouds. Tellus B 59, 57–65 (2007)

    Article  Google Scholar 

  24. Chaumat, L., Brenguier, J.-L.: Droplet spectra broadening in cumulus clouds. Part II: microscale droplet concentration heterogeneities. J. Atmos. Sci. 58, 642–654 (2001)

    Article  Google Scholar 

  25. Gillespie, D.T.: Three models for the coalescence growth of cloud drops. J. Atmos. Sci. 32, 600–607 (1975)

    Article  Google Scholar 

  26. Ayala, O., Rosa, B., Wang, L.-P., Grabowski, W.W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. New J. Phys. 10, 075015 (2008)

    Article  Google Scholar 

  27. Lian, H., Charalampous, G., Hardalupas, Y.: Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence. Exp. Fluids 54, 1525 (2013)

    Article  Google Scholar 

  28. Shaw, R.A., Reade, W.C., Collins, L.R., Verlinde, J.: Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci. 55, 1965–1976 (1998)

    Article  Google Scholar 

  29. Bec, J., Ray, S.S., Saw, E.W., Homann, H.: Abrupt growth of large aggregates by correlated coalescences in turbulent flow. Phys. Rev. E 93(3), 031102 (2016)

    Article  Google Scholar 

  30. Beard, K.V., Ochs, H.T.: Collection and coalescence efficiencies for accretion. J. Geophys. Res. 89, 7165–7169 (1984)

    Article  Google Scholar 

  31. Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  32. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. Ross, S.: Stochastic Processes. Wiley, Singapore (2004)

    Google Scholar 

  34. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, New York (2000)

    MATH  Google Scholar 

  35. Abate, J., Choudhury, G.L., Whitt, W.: An introduction to numerical transform inversion and its application to probability models. Comput. Probab. 13, 257–323 (2000)

    Article  MATH  Google Scholar 

  36. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York (2007)

    MATH  Google Scholar 

  37. Baumgardner, D., Brenguier, J.L., Bucholtz, A., Coe, H., DeMott, P., Garrett, T.J., Gayet, J.F., Hermann, M., Heymsfield, A., Korolev, A., Krmer, M., Petzold, A., Strapp, W., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M., Bachalo, W., Chuang, P.: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: a cook’s tour of mature and emerging technology. Atmos. Res. 102, 10–29 (2011)

    Article  Google Scholar 

  38. Pinsky, M., Khain, A., Shapiro, M.: Collision efficiency of drops in a wide range of Reynolds numbers: effects of pressure on spectrum evolution. J. Atmos. Sci. 58(7), 742–764 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak G. Madival.

Additional information

Communicated by William Dewar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madival, D.G. Stochastic growth of cloud droplets by collisions during settling. Theor. Comput. Fluid Dyn. 32, 235–244 (2018). https://doi.org/10.1007/s00162-017-0451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-017-0451-z

Keywords

Navigation