Skip to main content
Log in

Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine the distribution of different sizes of the area of the tibial insertion site among the population and to evaluate whether preoperative MRI measurements correlate with intraoperative findings to enable preoperative planning of the required graft size to cover the tibial insertion site sufficiently. The hypothesis was that the area of the tibial insertion site varies among individuals and that there is good agreement between MRI and intraoperative measurements.

Methods

Intraoperative measurements of the tibial insertion site were taken on 117 patients. Three measurements were taken in each plane building a grid to cover the tibial insertion site as closely as possible. The mean of the three measurements in each plane was used for determination of the area. Two orthopaedic surgeons, who were blinded to the intraoperative measurements, took magnetic resonance imaging (MRI) measurements of the area of the tibial insertion site at two different time points.

Results

The intraoperative measured mean area was 123.8 ± 21.5 mm2. The mean area was 132.8 ± 15.7 mm2 (rater 1) and 136.7 ± 15.4 mm2 (rater 2) when determined using MRI. The size of the area was approximately normally distributed. Inter-rater (0.89; 95 % CI 0.84, 0.92; p < 0.001) and intrarater reliability (rater 1: 0.97; 95 % CI 0.95, 0.98; p < 0.001; rater 2: 0.95; 95 % CI 0.92, 0.96; p < 0.001) demonstrated excellent test–retest reliability. There was good agreement between MRI and intraoperative measurement of tibial insertion site area (ICCs rater 1: 0.80; 95 % CI 0.71, 0.87; p < 0.001; rater 2: 0.87; 95 % CI 0.81, 0.91; p < 0.001).

Conclusion

The tibial insertion site varies in size and shape. Preoperative determination of the area using MRI is repeatable and enables planning of graft choice and size to optimally cover the tibial insertion site.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2011) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

    Article  PubMed  Google Scholar 

  2. Araujo P, van Eck CF, Torabi M, Fu FH (2013) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21(7):1495–1501

    Article  PubMed  Google Scholar 

  3. Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31(6):1084–1090

    Article  PubMed  Google Scholar 

  4. Cha PS, Brucker PU, West RV, Zelle BA, Yagi M, Kurosaka M, Fu FH (2005) Arthroscopic double-bundle anterior cruciate ligament reconstruction: an anatomic approach. Arthroscopy 21(10):1275

    Article  PubMed  Google Scholar 

  5. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30(7):882–890

    Article  PubMed  Google Scholar 

  6. Desai N, Bjornsson H, Musahl V, Bhandari M, Petzold M, Fu FH, Samuelsson K (2014) Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22(5):1009–1023

    Article  PubMed  Google Scholar 

  7. Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH (2016) Quantitative in situ analysis of the anterior cruciate ligament: length, midsubstance cross-sectional area, and insertion site areas. Am J Sports Med 44(1):118–125

    Article  PubMed  Google Scholar 

  8. Guenther D, Irarrazaval S, Nishizawa Y, Vernacchia C, Thorhauer E, Musahl V, Irrgang JJ, Fu FH (2015) Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3891-2

    Google Scholar 

  9. Hensler D, Working ZM, Illingworth KD, Tashman S, Fu FH (2013) Correlation between femoral tunnel length and tunnel position in ACL reconstruction. J Bone Joint Surg Am 95(22):2029–2034

    Article  PubMed  Google Scholar 

  10. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc 23(11):3157–3162

    Article  PubMed  Google Scholar 

  11. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Size correlation between the tibial anterior cruciate ligament footprint and the tibia plateau. Knee Surg Sports Traumatol Arthrosc 23(4):1147–1152

    Article  PubMed  Google Scholar 

  12. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213

    Article  PubMed  Google Scholar 

  13. Kopf S, Martin DE, Tashman S, Fu FH (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(4):871–881

    Article  PubMed  Google Scholar 

  14. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113

    Article  PubMed  Google Scholar 

  15. Li J, Wang J, Li Y, Shao D, You X, Shen Y (2015) A prospective randomized study of anterior cruciate ligament reconstruction with autograft, gamma-irradiated allograft, and hybrid graft. Arthroscopy 31(7):1296–1302

    Article  PubMed  Google Scholar 

  16. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28(4):526–531

    Article  PubMed  Google Scholar 

  17. Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT, Parker RD, Kaeding CC, Magnussen RA (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 29(12):1948–1953

    Article  PubMed  Google Scholar 

  18. Middleton KK, Muller B, Araujo PH, Fujimaki Y, Rabuck SJ, Irrgang JJ, Tashman S, Fu FH (2015) Is the native ACL insertion site “completely restored” using an individualized approach to single-bundle ACL-R? Knee Surg Sports Traumatol Arthrosc 23(8):2145–2150

    Article  CAS  PubMed  Google Scholar 

  19. Murawski CD, Chen AF, Fu FH (2015) Radiographic femoral bicondylar width predicts anterior cruciate ligament insertion site sizes. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3886-z

    Google Scholar 

  20. Nakamae A, Ochi M, Deie M, Adachi N, Shibuya H, Ohkawa S, Hirata K (2014) Clinical outcomes of second-look arthroscopic evaluation after anterior cruciate ligament augmentation: comparison with single- and double-bundle reconstruction. Bone Joint J 96-B(10):1325–1332

    Article  CAS  PubMed  Google Scholar 

  21. Schwartzberg R, Snyder K, Reuss B (2015) Preoperative measurement of ACL insertion sites. J Knee Surg 28(1):89–94

    PubMed  Google Scholar 

  22. Seon JK, Gadikota HR, Wu JL, Sutton K, Gill TJ, Li G (2010) Comparison of single- and double-bundle anterior cruciate ligament reconstructions in restoration of knee kinematics and anterior cruciate ligament forces. Am J Sports Med 38(7):1359–1367

    Article  PubMed  Google Scholar 

  23. Siebold R (2011) The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19(5):699–706

    Article  PubMed  Google Scholar 

  24. Siebold R, Schuhmacher P (2012) Restoration of the tibial ACL footprint area and geometry using the modified insertion site table. Knee Surg Sports Traumatol Arthrosc 20(9):1845–1849

    Article  PubMed  Google Scholar 

  25. Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847

    Article  PubMed  Google Scholar 

  26. van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH (2012) Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 40(4):800–807

    Article  PubMed  Google Scholar 

  27. Watanabe BM, Howell SM (1995) Arthroscopic findings associated with roof impingement of an anterior cruciate ligament graft. Am J Sports Med 23(5):616–625

    Article  CAS  PubMed  Google Scholar 

  28. Widhalm HK, Surer L, Kurapati N, Guglielmino C, Irrgang JJ, Fu FH (2014) Tibial ACL insertion site length: correlation between preoperative MRI and intra-operative measurements. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3473-8

    Google Scholar 

  29. Zakko P, van Eck CF, Guenther D, Irrgang JJ, Fu FH (2015) Can we predict the size of frequently used autografts in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3695-4

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guenther, D., Irarrázaval, S., Albers, M. et al. Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 25, 1576–1582 (2017). https://doi.org/10.1007/s00167-016-4295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4295-7

Keywords

Navigation