Skip to main content
Log in

A prediction of the machining defects in flank milling

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In peripheral milling with great axial engagements, the tool deflections generate some geometrical defects on the machined surface. This article present a prediction method of these defects which is applicable on every ruled surface. The cutting forces are estimate with the cutting pressure notion. The parameters of the tool/workpiece material couple are identified by a test part. The prediction of the tool deflections requires controlling the tool immersion angle for each angular position of the tool. The deflections can be significant. An original procedure which is based on an engagement cards avoids an iterative calculation of the radial engagement. The experimental checking of the method of prediction is presented in a test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Smith S, Tlusty J (1991) An overview of modeling and simulation of the milling process. J Engin Indust 113:169–175

    Google Scholar 

  2. Smith S, Tlusty J (1993) Efficient simulation programs for chatter in milling. Annal CIRP 42(1):463–466

    Google Scholar 

  3. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Annal CIRP 44(1):357–362

    Google Scholar 

  4. Tian J, Hutton SG (2001) Chatter instability in milling systems with flexible rotating spindles—a new theoretical approach. J Manufact Sci Engin 123(1):1–9

    Article  Google Scholar 

  5. Insperger T, Stephan G, Bayly PV (2003) Stability of up-milling and down-milling, part 1: alternative analytical methods. Int J Mach Tool Manufact 43(1):25–34

    Article  Google Scholar 

  6. Davies MA, Pratt JR, Dutterer BR, Burns TJ (2000) The stability of low radial immersion milling. Annal CIRP 49(1):37–40

    Google Scholar 

  7. Larue A, Anselmetti B (2003) Deviation of a machined surface in flank milling. Int J Mach Tool Manufact 43(2):129–138

    Article  Google Scholar 

  8. Rubio W (2001) Analyse du positionnement et aide au choix d’outils pour l’usinage de formes gauches. Rapport d’habilitation à diriger des recherches, Université Paul Sabatier, Toulouse, France (in French)

  9. Tönshoff HK (2000) Optimal tool positioning for five-axis flank milling of arbitrary shaped surfaces. Prod Engin 7(1)

  10. Affouard A (2001) Introduction de l’interpolation polynomiale dans le cadre de l’usinage 5 axes par le flanc. Mémoire de DEA de production automatisée LURPA ENS Cachan, 2001 (in French)

  11. Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comp-Aid Des 35(4):375–382

    Google Scholar 

  12. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tools Manufact 22(1):7–22

    Article  Google Scholar 

  13. Seo TI (1998) Intégration des déformations outil en génération de trajectoires d’usinage. Dissertation, Ecole Centrale de Nantes (in French)

  14. Altintas Y, Spence A (1991) End milling force algorithms for CAD systems. Annal CIRP 40(1):31–34

    Google Scholar 

  15. Ikua BW, Tanaka H, Obata F, Sakamoto S (2001) Prediction of cutting forces and machining error in ball end milling of curved surfaces—1: theoretical analysis. Prec Engin J Int Soc P Engin Nanotech 25:266–273

    Article  Google Scholar 

  16. Larue A, Anselmetti B, Soulier B (2001) Influence des déformations des fraises sur la qualité des surfaces usinées. In: 7ème colloque PRIMECA sur la conception intégrée La Plagne (France), Avril 2001 (in French)

  17. Larue A, Anselmetti B (2002) Contribution to the tool paths generation in cam system. In: Proceedings of the 4th International Conference on Integrated Design and Manufacturing in Mechanical Engineering, Clermont, Ferrand, France, 14–16 May 2002

  18. Software NCSIMUL, SPRING Technologies Society,http://www.ncsimul.com/default.asp?/index0.asp

  19. Software VERICUT, CGTECH Society,http://www.cgtech.com/

  20. Software DELMIA, Dassault Systèmes Society,http://www.delmia.com/

  21. Meng Lim E, Feng HY, Menq CH, Lin ZH (1995) The prediction of dimensional error for sculptured surface productions using the ball end milling process. Part 2: surface generation model and experimental verification. Int J Mach Tool Manufact 35(8):1171–1185

    Article  Google Scholar 

  22. Sim S, Yang M (1993) The prediction of the cutting force in Ball end milling with a flexible cutter. Int J Mach Tool Manufact 33(2):267–284

    Article  Google Scholar 

  23. Cho H, Yang M (1993) Precision pocketting in the ball end milling process. Int J Mach Tool Manufact 27(4):333–338

    Google Scholar 

  24. Sutherland JW, DeVor RE (1986) An improved method for cutting force and surface error prediction in flexible end milling systems. Trans ASME J Engin Indust 108:269–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Larue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larue, A., Anselmetti, B. A prediction of the machining defects in flank milling. Int J Adv Manuf Technol 24, 102–111 (2004). https://doi.org/10.1007/s00170-003-1774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-003-1774-z

Keywords

Navigation