Skip to main content
Log in

A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A supply chain (SC) distribution network design model is developed in this paper. The goal of the model is to select the optimum numbers, locations and capacity levels of plants and warehouses to deliver products to retailers at the least cost while satisfying desired service level to retailers. A maximal covering approach is used in statement of the service level. The model distinguishes itself from other models in this field in the modeling approach used. Because of somewhat imprecise nature of retailers’ demands and decision makers’ (DM) aspiration levels for the goals, a fuzzy modeling approach is used. Additionally, a novel and generic interactive fuzzy goal programming (IFGP)-based solution approach is proposed to determine the preferred compromise solution. To explore the viability of the proposed model and the solution approach, computational experiments are performed on realistic scale case problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pirkul H, Jayaraman V (1998) A multi-commodity, multi-plant, capacitated facility location problem: formulation and efficient heuristic solution. Comput Oper Res 25(10):869–878

    Article  MATH  MathSciNet  Google Scholar 

  2. Jang Y-J, Jang S-Y, Chang B-Y, Park J (2002) A combined model of network design and production/distribution planning for a supply network. Comput Ind Eng 43:263–281

    Article  Google Scholar 

  3. Chopra S, Meindl P (2001) Supply chain management. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  4. Church RL, Revelle C (1974) The maximal covering location problem. Pap Reg Sci Assoc 32:101–118

    Article  Google Scholar 

  5. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  6. Petrovic D, Roy R, Petrovic R (1999) Modeling and simulation of a supply chain in an uncertain environment. Eur J Oper Res 109:299–309

    Article  Google Scholar 

  7. Reznik L, Pham B (2001) Fuzzy models in evaluation of information uncertainty in engineering and technology applications. Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Austraila, pp 972–975

  8. Francis RL, Mcginnis LF, White JA (1983) Locational analysis. Eur J Oper Res 12:220–252

    Article  MATH  MathSciNet  Google Scholar 

  9. Aikens CH (1985) Facility location models for distribution planning. Eur J Oper Res 22:263–279

    Article  MATH  MathSciNet  Google Scholar 

  10. Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Manage Sci 35:645–674

    MATH  MathSciNet  Google Scholar 

  11. Beamon BM (1998) Supply chain design and analysis: models and methods. Int J Prod Econ 55:281–294

    Article  Google Scholar 

  12. Avella P et al (1998) Some personal views on the current state and the future of locational analysis. Eur J Oper Res 104:269–287

    Article  MATH  Google Scholar 

  13. Pontrandolfo P, Okogbaa OG (1999) Global manufacturing: a review and a framework for planning in a global corporation. Int J Prod Res 37(1):1–19

    Article  MATH  Google Scholar 

  14. Meixell MJ, Gargeya VB (2005) Global supply chain design: a literature review and critique. Transport Res E-Log 41:531–550

    Article  Google Scholar 

  15. Geoffrion AM, Graves GW (1974) Multicommodity distribution system design by benders decomposition. Manage Sci 20(5):822–844

    Article  MathSciNet  MATH  Google Scholar 

  16. Brown GG, Graves GW, Honczarenko MD (1987) Design and operation of a multicommodity production/distribution system using primal goal decomposition. Manage Sci 33(11):1469–1480

    Google Scholar 

  17. Cohen MA, Lee HL (1988) Strategic analysis of integrated production-distribution systems: models and methods. Oper Res 36:216–228

    Google Scholar 

  18. Pirkul H, Jayaraman V (1996) Production, transportation, and distribution planning in a multi-commodity tri-echelon system. Transport Sci 30:291–302

    MATH  Google Scholar 

  19. Jayaraman V (1998) An efficient heuristic procedure for practical-sized capacitated warehouse design and management. Decision Sci 29:729–745

    Article  Google Scholar 

  20. Dogan K, Goetschalckx M (1999) A primal decomposition method for the integrated design of multi-period production and distribution system. IIE Trans 31:1027–1036

    Google Scholar 

  21. Tragantalerngsak S, Holt J, Ronnqvist M (2000) An exact method for the two-echelon, single-source, capacitated facility location problem. Eur J Oper Res 123:473–489

    Article  MATH  MathSciNet  Google Scholar 

  22. Lee HK, Lee I-B, Reklaitis GV (2000) Capacity expansion problem of multisite batch plants with production and distribution. Comput Chem Eng 24:1597–1602

    Article  Google Scholar 

  23. Melachrinodis E, Min H (2000) The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: a multiple objective approach. Eur J Oper Res 123(1):1–15

    Article  Google Scholar 

  24. Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in sc design. Omega 28:581–598

    Article  Google Scholar 

  25. Pirkul H, Jayaraman V (2001) Planning and coordination of production and distribution facilities for multiple commodities. Eur J Oper Res 133:394–408

    Article  MATH  Google Scholar 

  26. Tsiakis P, Shah N, Pantelides CC (2001) Design of multi-echelon supply chain networks under demand uncertainty. Ind Eng Chem Res 40:3585–3604

    Article  Google Scholar 

  27. Talluri S, Baker RC (2002) A multi-phase mathematical programming approach for effective supply chain design. Eur J Oper Res 141:544–558

    Article  MATH  Google Scholar 

  28. Cakravastia A, Toha IS, Nakamura N (2002) A two-stage model for the design of supply chain networks. Int J Prod Econ 80:231–248

    Article  Google Scholar 

  29. Beamon BM, Fernandes C (2004) Supply chain network configuration for product recovery. Prod Plan Control 15(3):270–281

    Article  Google Scholar 

  30. Yeh W-C (2005) A hybrid heuristic algorithm for the multistage supply chain network problem. Int J Adv Manuf Techol 26:675–685

    Article  Google Scholar 

  31. Eskigun E, Uzsoy R, Preckel PV, Beaujon G, Krishnan S, Tew JD (2005) Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers. Eur J Oper Res 165:182–206

    Article  MATH  MathSciNet  Google Scholar 

  32. Amiri A (2006) Designing a distribution network in a supply chain: formulation and efficient solution procedure. Eur J Oper Res 171:567–576

    Article  MATH  Google Scholar 

  33. Narasimhan R (1980) Goal programming in a fuzzy environment. Decision Sci 11:325–336

    Article  MathSciNet  Google Scholar 

  34. Hannan EL (1981) Some further comments on fuzzy priorities. Decision Sci 13:337–339

    Article  Google Scholar 

  35. Ignizio JP (1982) On the rediscovery of fuzzy goal programming. Decision Sci 13:331–336

    Article  Google Scholar 

  36. Narasimhan R, Rubin PA (1984) Fuzzy goal programming with nested priorities. Fuzzy Set Syst 14:115–129

    Article  MATH  MathSciNet  Google Scholar 

  37. Tiwari RN, Dharmar S, Rao JR (1986) Priority structure in fuzzy goal programming. Fuzzy Set Syst 19:251–259

    Article  MATH  MathSciNet  Google Scholar 

  38. Tiwari RN, Dharmar S, Rao JR (1987) Fuzzy goal programming - an additive method. Fuzzy Set Syst 24:27–34

    Article  MATH  MathSciNet  Google Scholar 

  39. Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manage Sci 17:141–164

    MathSciNet  Google Scholar 

  40. Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55

    Article  MATH  Google Scholar 

  41. Lai Y-J, Hwang C-L (1994) Fuzzy multiple objective decision making. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  42. Abd El-Wahed WF, Lee SM (2006) Interactive fuzzy goal programming for multi- objective transportation problems. Omega 34:158–166

    Article  Google Scholar 

  43. Werners B (1987) Interactive multiple objective programming subject to flexible constraints. Eur J Oper Res 31:342–349

    Article  MATH  MathSciNet  Google Scholar 

  44. Werners B (1987) An interactive fuzzy programming system. Fuzzy Set Syst 23:131–147

    Article  MATH  MathSciNet  Google Scholar 

  45. Leung Y (1987) Hierarchical programming with fuzzy objectives and constraints. In: Kacprzyk J, Orlovski SA (eds) Optimization models using fuzzy sets and possibility theory. D. Reidel, Dordrecht, pp 245–257

    Google Scholar 

  46. Fabian Cs, Ciobanu Gh, Stoica M (1987) Interactive polyoptimization for fuzzy mathematical programming. In: Kacprzyk J, Orlovski SA (eds) Optimization models using fuzzy sets and possibility theory. D. Reidel, Dordrecht, pp 272–291

    Google Scholar 

  47. Sasaki MY, Nakahara Y, Gen M, Ida K (1991) An efficient algorithm for solving fuzzy multiobjective 0-1 linear programming problem. Comput Ind Eng 21:647–651

    Article  Google Scholar 

  48. Babtistella LFB, Ollero A (1980) Fuzzy methodologies for interactive multicriteria optimization. IEEE T Syst Man Cyb 10:355–365

    Article  Google Scholar 

  49. Werners B (1988) Aggregation models in mathematical programming. In: Mitra G, Greenberg HJ, Lootsma FA, Rijckaert MJ, Zimmermann H-J (eds) Mathematical models for decision support. Springer, Berlin Heidelberg New York, pp 295–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Selim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selim, H., Ozkarahan, I. A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. Int J Adv Manuf Technol 36, 401–418 (2008). https://doi.org/10.1007/s00170-006-0842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-006-0842-6

Keywords

Navigation