Skip to main content
Log in

Magnesium and its alloys applications in automotive industry

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The objective of this study is to review and evaluate the applications of magnesium in the automotive industry that can significantly contribute to greater fuel economy and environmental conservation. In the study, the current advantages, limitations, technological barriers and future prospects of Mg alloys in the automotive industry are given. The usage of magnesium in automotive applications is also assessed for the impact on environmental conservation. Recent developments in coating and alloying of Mg improved the creep and corrosion resistance properties of magnesium alloys for elevated temperature and corrosive environments. The results of the study conclude that reasonable prices and improved properties of Mg and its alloys will lead to massive use of magnesium. Compared to using alternative materials, using Mg alloys results in a 22% to 70% weight reduction. Lastly, the use of magnesium in automotive components is increasing as knowledge of forming processes of Mg alloys increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies G (2003) Magnesium. Materials for automotive bodies, Elsevier, G. London, pp 91, 158, 159

  2. Kuo JL, Sugiyama S, Hsiang SH, Yanagimoto J (2006) Investigating the characteristics of AZ61 Magnesium alloy on the hot and semi-solid compression test. Int J Adv Manuf Technol 29(7–8):670–677

    Article  Google Scholar 

  3. Jain CC, Koo CH (2007) Creep and corrosion properties of the extruded magnesium alloy containing rare earth. Mater Trans 2:265–272

    Article  Google Scholar 

  4. Blawert C, Hort N, Kainer KV (2004) Automotive applications of magnesium and its alloys. Trans Indian Inst Met 57(4):397–408

    Google Scholar 

  5. Eliezer D, Aghion E, Froes FH (1998) Magnesium science and technology. Adv Mat Performance 5:201–212

    Article  Google Scholar 

  6. Aghion E, Bronfin B (2000) Magnesium alloys development towards the 21(st) century. Magnesium alloys 2000 Mat Sci Forum 350(3):19–28

    Google Scholar 

  7. Friedrich H, Schumann S (2001) Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol 117:276–281

    Article  Google Scholar 

  8. Schuman S (2005) The paths and strategies for increased magnesium application in vehicles. Mat Sci Forum 488–489:1–8

    Google Scholar 

  9. Dieringa H, Kainer KU (2007) Magnesium-der zukunftswerkstoff für die automobilindustrie. Mat-wiss U Werkstofftech 38(2):91–95

    Article  Google Scholar 

  10. Tang B, Wang Xs, Li SS, Zeng DB, Wu R (2005) Effects of Ca combined with Sr additions on microstructure and mechanical properties of AZ91D. Mater Sci Technol 21(29):574–578

    Article  Google Scholar 

  11. Michalek JJ, Papalambros PY, Skerlos SJ (2004) A study of fuel efficiency and emission policy impact on optimal vehicle design decisions. J Mech Des 126(6):1062–1070

    Article  Google Scholar 

  12. Medraj M, Parvez A (2007) Analyse the importance of Magnesium-aluminium-strontium alloys for more fuel-efficient automobiles. Automotive 45–47

  13. Aichinger HM (1996) Reduced fuel consumption through weight-saving in passenger vehicles-importance of steel as a lightweight material. Stahl Und Eisen 116(6):71

    Google Scholar 

  14. Kurihara Y (1994) The role of aluminum in automotive weight-reduction. 2. JOM J Miner Metals Mater Society 46(2):33–35

    Google Scholar 

  15. Das S (2003) Magnesium for automotive applications: primary production cost assessment. JOM J Miner Metals Mater Society 55(11):22–26

    Google Scholar 

  16. (2000) Emission control, Automotive World 4:10–15

  17. Aghion E, Bronfin B, Eliezer D (2001) The role of the magnesium industry in protecting the environment. J Mater Process Technol 117(3):381–385

    Article  Google Scholar 

  18. (2001) Annual Report. Int. Magnesium Association

  19. Kammer C (2001) Magnesium Taschenbuch. Aluminium, Verlag, Germany p 1

    Google Scholar 

  20. Brown B (2007) Magnesium application in the short term. http://www.magnesium.com/W3/data-bank/article.php?mgw=199&magnesium=286

  21. Commission of the European Communities (2007), Results of the review of the Community Strategy to reduce CO2 emissions from passenger cars and light-commercial vehicles, {SEC(2007) 60}{SEC(2007) 61}, COM(2007) 19 final

  22. United Nations (February 2007), Kyoto protocol reference manual on accounting of emissions and assigned amounts

  23. Price on Magnesium and Aluminium (2007) http://www.lightmetals.org/e/documents/LMTinretospect.pdf

  24. Hakamada M, Furuta T, Chino Y, Chen Y, Kusuda H, Mabuchi M (2007) Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 32(8):1352–1360

    Article  Google Scholar 

  25. Fitch P, Cooper JS (2005) Life-cycle modeling for adaptive and variant design. Res Eng Design 15(4):216–228

    Article  Google Scholar 

  26. Das S (2000) The life-cycle impacts of aluminum body-in-white automotive. JOM J Miner Metals Mater Society 50(8):41–44

    Google Scholar 

  27. Tkachenko VG, Maksimchuk IN, Volosevich PY, Lashuk NK, Malka AN, Friezel VV (2006) Creep resistance and long-term strength of structural magnesium alloys. High Temp Mater Proc 25(1–2):97–107

    Google Scholar 

  28. Pekguleryuz MO, Kaya AA (2003) Creep resistant magnesium alloys for powertrain applications. Adv Eng Mater 5(12):866–878

    Article  Google Scholar 

  29. Baril E, Labelle P, Pekguleryuz MO (2003) Elevated temperature Mg-Al-Sr: Creep resistance, mechanical properties, and microstructure. Jom-Journal of the Minerals Metals & Materials Society 55(11):A34–A39

    Google Scholar 

  30. Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H (2003) Newly developed magnesium alloys for powertrain applications. Jom-J Miner Metals Mater Society 55(11):A30–A33

    Google Scholar 

  31. Pekguleryuz MO, Baril E, Labelle P, Argo D (2003) Creep resistant Mg-Al-Sr alloys. J Adv Mater 35(3):32–38

    Google Scholar 

  32. Grieve DJ (2001) Magnesium Die Castings. http://www.tech.plym.ac.uk/sme/mech330/magcast.htm

  33. Bavarian Motor Works (2007) Magnesium fosters rebirth of an automotive engine. International magnesium association: The global voice for magnesium (May):1–3

  34. AIST (2007) New technology for increasing the application for magnesium alloys. http://www.aist.go.jp/aist_e/latest_research/2001/20011203/20011203.html

  35. Robots 4 welding (2007) Welding magnesium. http://www.robots4welding.com/magnesium-welding-automation.htm

  36. Kulekci MK, Şik A, Kaluç E (2007) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol DOI 10.1007/s00170-006-0901-z

  37. Chi CT, Chao CG (2007) Characterization on electron beam welds and parameters for AZ31B-F extrusive plates. J Mater Process Technol 182(1–3):369–373

    Article  Google Scholar 

  38. Liu LM, Wang SX, Zhu ML (2006) Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer. Sci Technol Weld Join 11(5):523–525

    Article  Google Scholar 

  39. Chang WS, Kim HJ, Noh JS, Bang HS (2006) The evaluation of weldability for AZ31B-H24 and AZ91C-F Mg alloys in friction stir welding. Key Eng Mater 321–323:1723–1728

    Article  Google Scholar 

  40. Welding Magnesium (2007) http://www.robots4welding.com/magnesium-welding-automation.htm

  41. Huang ZH, Guo XF, Zhang ZM (2006) Effects of alloying on microstructure and mechanical property of AZ91D magnesium alloy. Rare Met Mater Eng 35(3):363–366

    Google Scholar 

  42. Garmo EPD, Black JT, Kohser RA (1997) Magnesium and magnesium alloys. Materials and processes in manufacturing (8th Edition). Wiley, USA, pp 182–184

    Google Scholar 

  43. Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Technol 138:594–599

    Article  Google Scholar 

  44. Haferkamp H, Boehm R, Holzkamp U, Jaschik C, Kaese V, Niemeyer M (2001) Alloy development, processing and applications in magnesium lithium alloys. Mater Trans 42(7):1160–1166

    Article  Google Scholar 

  45. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291

    Article  Google Scholar 

  46. ASM Handbook vol. 2, 1961, p. 1081

  47. Report (2001) “Magnesium in the aerospace industry”, NFPA: National fire protection association. Ref: ANM-112N-04-07, Rev.c.USA

  48. Shi ZM, Song GL, Atrens A (2006) Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corros Sci 48(8):1939–1959

    Article  Google Scholar 

  49. Niu LY, Jiang ZH, Li GY, Gu CD, Lian JS (2006) A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf Coat Technol 200(9):3021–3026

    Article  Google Scholar 

  50. Polmear IJ (1994) Magnesium alloys and applications. Mater Sci Technol 10(1):1–14

    Google Scholar 

  51. Magnesium Pure and Alloys, Norsk Hydro Report

  52. Mg application in automotive industry (2007) http://www.avisma.ru/mg/eng/03-2.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kemal Kulekci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39, 851–865 (2008). https://doi.org/10.1007/s00170-007-1279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1279-2

Keywords

Navigation