Skip to main content
Log in

Recent developments in grinding of advanced materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article discusses the recent developments in grinding of advanced materials. Eighty-four journal papers published recently are briefly introduced. The topics are advances in grinding of brittle materials, grinding of silicon, dressing/truing of grinding wheels, grinding fluids, grinding of mirrors and vibration-assisted grinding, measuring/monitoring of grinding, optimization of grinding, modelling and simulation of grinding, and size effect. Ductile mode grinding of brittle materials has been and will continue to be an intensive research area because of its increasing industrial applications and academic demands for fundamental understanding of the ductile mode grinding mechanism. Highly precision manufacturing of silicon substrates faces more and more new challenges. Grinding of silicon continues to be a popular research topic. Using lasers to true and dress grinding wheels has attracted great research interest, because it has significant advantages over mechanical processes. Environmentally friendly grinding fluids are increasingly highly demanded. Vibration-assisted grinding is promising. Monitoring, modelling and optimization of grinding processes help to understand grinding mechanisms and achieve better grinding performance. The size effect is more prominent in grinding than turning and can be used for obtaining a controlled work-hardening surface layer with higher wear resistance and hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul S, Chattopadhyay AB (2006) Environmentally conscious machining and grinding with cryogenic cooling. Mach Sci Technol 10(1):87–131

    Article  Google Scholar 

  2. Sinot O, Chevrier P, Padilla P (2006) Experimental simulation of the efficiency of high speed grinding wheel cleaning. Int J Mach Tools Manuf 46(2):170–175

    Article  Google Scholar 

  3. Alagumurthi N, Palaniradja K, Soundararajan V (2006) Optimization of grinding process through design of experiment (DOE) - A comparative study. Mater Manuf Process 21(1):19–21

    Article  Google Scholar 

  4. Liao TW, Hua G, Qu J, Blau PJ (2006) Grinding wheel condition monitoring with Hidden Markov model-based clustering methods. Mach Sci Technol 10(4):511–538

    Article  Google Scholar 

  5. Krajnik P, Kopac J, Sluga A (2005) Design of grinding factors based on response surface methodology. J Mater Process Technol 162–163(SPEC. ISS.):629–636

    Article  Google Scholar 

  6. Agarwal S, Venkateswara Rao P (2005) A new surface roughness prediction model for ceramic grinding. Proc Inst Mech Eng, B J Eng Manuf 219(11):811–821

    Article  Google Scholar 

  7. Young HT, Liao HT, Huang HY (2006) Surface integrity of silicon wafers in ultra precision machining. Int J Adv Manuf Technol 29(3–4):372–378

    Article  Google Scholar 

  8. Young HT, Chen DJ (2006) Online dressing of profile grinding wheels. Int J Adv Manuf Technol 27(9–10):883–888

    Article  Google Scholar 

  9. Sahu P, Sagar R (2006) Development of abrasive cut-off wheel having side grooves. Int J Adv Manuf Technol 31(1–2):37–40

    Article  Google Scholar 

  10. Ma Y, Lou ZF (2005) Abrasive technology of single-crystal diamond by diamond abrasive wheel. Key Eng Mater 291–292:21–26

    Article  Google Scholar 

  11. Kim JD, Lee DH, Lee KB (2005) The effects of dynamic characteristics on the surface texture in mirror grinding. Int J Adv Manuf Technol 27(3–4):274–280

    Article  Google Scholar 

  12. Sanchez JA, Ortega N, Lopez De Lacalle LN, Lamikiz A, Maranon JA (2006) Analysis of the electro discharge dressing (EDD) process of large-grit size cBN grinding wheels. Int J Adv Manuf Technol 29(7–8):688–694

    Article  Google Scholar 

  13. Sun X, Stephenson DJ, Ohnishi O, Baldwin A (2006) An investigation into parallel and cross grinding of BK7 glass. Precis Eng 30(2):145–153

    Article  Google Scholar 

  14. Min S, Dornfeld D, Inasaki I, Ohmori H, Lee D, Deichmueller M, Yasuda T, Niwa K (2006) Variation in machinability of single crystal materials in micromachining. CIRP Annals - Manufacturing Technology 55(1):103–106

    Article  Google Scholar 

  15. Venkatesh VC, Izman S, Vichare PS, Mon TT, Murugan S (2005) The novel bondless wheel, spherical glass chips and a new method of aspheric generation. J Mater Process Technol 167(2–3):184–190

    Google Scholar 

  16. Koshy P, Zhou Y, Guo C, Chand R, Malkin S (2005) Novel kinematics for cylindrical grinding of brittle materials. CIRP Annals - Manufacturing Technology 54(1):289–292

    Article  Google Scholar 

  17. Tong S, Gracewski SM, Funkenbusch PD (2006) Measurement of the Preston coefficient of resin and bronze bond tools for deterministic microgrinding of glass. Precis Eng 30(2):115–122

    Article  Google Scholar 

  18. Izman S, Venkatesh VC (2007) Gelling of chips during vertical surface diamond grinding of BK7 glass. J Mater Process Technol 185(1–3):178–183

    Article  Google Scholar 

  19. Chen M, Zhao Q, Dong S, Li D (2005) The critical conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J Mater Process Technol 168(1):75–82

    Google Scholar 

  20. Jirapattarasilp K, Rukijkanpanich J (2007) The experiment of high-speed grinding of a gemstone: Cubic zirconia. Int J Adv Manuf Technol 33(11–12):1136–1142

    Article  Google Scholar 

  21. Sun W, Pei ZJ, Fisher G (2006) A grinding-based manufacturing method for silicon wafers: Generation mechanisms of central bumps on ground wafers. Mach Sci Technol 10(2):219–233

    Article  Google Scholar 

  22. Sun W, Pei ZJ, Fisher GR (2005) Fine grinding of silicon wafers: effects of chuck shape on grinding marks. Int J Mach Tools Manuf 45(6):673–686

    Article  Google Scholar 

  23. Narasimhan A (2005) Thermal analysis of a silicon wafer processing combination bake-chill station used in microlithography. Mater Manuf Process 20(2):273–286

    Article  MathSciNet  Google Scholar 

  24. Young HT, Lin CC, Liao HT, Yang M (2008) Precision wafer thinning and its surface conditioning technique. Int J Mater Prod Technol 31(1):36–45

    Article  Google Scholar 

  25. Paehler D, Schneider D, Herben M (2007) Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectron Eng 84(2):340–354

    Article  Google Scholar 

  26. Zimmermann S, Zhao QT, Trui B, Wiemer M, Kaufmann C, Mantl S, Dudek V, Gessner T (2005) Fabrication and characterization of buried silicide layers on SOI substrates for BICMOS-applications. Microelectron Eng 82(3–4):454–459

    Article  Google Scholar 

  27. Pietsch GJ, Kerstan M (2005) Understanding simultaneous double-disk grinding: operation principle and material removal kinematics in silicon wafer planarization. Precis Eng 29(2):189–196

    Article  Google Scholar 

  28. Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J (2007) Investigations of the influence of dicing techniques on the strength properties of thin silicon. Microelectron Reliab 47(2–3):168–178

    Google Scholar 

  29. Venkatesh VC, Izman S (2007) Development of a novel binderless diamond grinding wheel for machining IC chips for failure analysis. J Mater Process Technol 185(1–3):31–37

    Article  Google Scholar 

  30. Tani Y, Okuyama T, Murai S, Kamimura Y, Sato H (2007) Development of Silica Polyvinyl Alcohol Wheels for Wet Mirror Grinding of Silicon Wafer. CIRP Annals - Manufacturing Technology 56(1):361–364

    Article  Google Scholar 

  31. Touge M, Watanabe J (2006) Ultra-thinning processing of dielectric substrates by precision abrasive machining. CIRP Annals - Manufacturing Technology 55(1):317–320

    Article  Google Scholar 

  32. Jackson MJ, Khangar A, Chen X, Robinson GM, Venkatesh VC, Dahotre NB (2007) Laser cleaning and dressing of vitrified grinding wheels. J Mater Process Technol 185(1–3):17–23

    Article  Google Scholar 

  33. Hosokawa A, Ueda T, Yunoki T (2006) Laser dressing of metal bonded diamond wheel. CIRP Annals - Manufacturing Technology 55(1):329–332

    Article  Google Scholar 

  34. Wang XY, Wu YB, Wang J, Xu WJ, Kato M (2005) Absorbed energy in laser truing of a small vitrified CBN grinding wheel. J Mater Process Technol 164–165:1128–1133

    Article  Google Scholar 

  35. Harimkar SP, Dahotre NB (2006) Evolution of surface morphology in laser-dressed alumina grinding wheel material. International Journal of Applied Ceramic Technology 3(5):375–381

    Article  Google Scholar 

  36. Khangar AA, Kenik EA, Dahotre NB (2005) Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceram Int 31(4):621–629

    Article  Google Scholar 

  37. Chen WK, Kuriyagawa T, Huang H, Yosihara N (2005) Machining of micro aspherical mould inserts. Precis Eng 29(3):315–323

    Article  Google Scholar 

  38. Hwang Y, Kuriyagawa T, Lee SK (2006) Wheel curve generation error of aspheric microgrinding in parallel grinding method. Int J Mach Tools Manuf 46(15):1929–1933

    Article  Google Scholar 

  39. Alves SM, de Oliveira JFG (2006) Development of new cutting fluid for grinding process adjusting mechanical performance and environmental impact. J Mater Process Technol 179(1–3):185–189

    Article  Google Scholar 

  40. Oliveira JFG, Alves SM (2006) Development of environmentally friendly fluid for CBN grinding. CIRP Annals - Manufacturing Technology 55(1):343–346

    Article  Google Scholar 

  41. Gao Y, Lai H (2007) Effects of actively cooled coolant for grinding ductile materials. Key Eng Mater 339:427–433

    Article  Google Scholar 

  42. Gao Y, Lai H (2008) Use of actively cooled and activated coolant for surface quality improvement in ductile material grinding. Int J Mater Prod Technol 31(1):14–26

    Article  Google Scholar 

  43. Irani RA, Bauer RJ, Warkentin A (2007) Development of a new cutting fluid delivery system for creepfeed grinding. Int J Manuf Technol Manag 12(1–3):108–126

    Article  Google Scholar 

  44. Catai RE, Bianchi EC, Zilio FM, De Valarelli ID, Alves MCDS, Silva LR, De Aguiar PR (2006) Global analysis of aerodynamics deflectors efficiency in the grinding process. Journal of the Brazilian Society of Mechanical Sciences and Engineering 28(2):140–145

    Article  Google Scholar 

  45. Salonitis K, Chryssolouris G (2007) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33(3–4):285–297

    Article  Google Scholar 

  46. Li J, Li JCM (2005) Temperature distribution in workpiece during scratching and grinding. Materials Science and Engineering A 409(1–2):108–119

    Article  Google Scholar 

  47. Cheng HB, Feng ZJ, Cheng K, Wang YW (2005) Design of a six-axis high precision machine tool and its application in machining aspherical optical mirrors. Int J Mach Tools Manuf 45(9):1085–1094

    Article  Google Scholar 

  48. Yin L, Pickering JP, Ramesh K, Huang H, Spowage AC, Vancoille EYJ (2005) Planar nanogrinding of a fine grained WC-Co composite for an optical surface finish. Int J Adv Manuf Technol 26(7–8):766–773

    Article  Google Scholar 

  49. Zhong ZW, Peng ZF (2007) Fractal roughness structures of precision-machined WC-Co- and Inconel 625-coated steel rods. Int J Adv Manuf Technol 33(9–10):885–890

    Article  Google Scholar 

  50. Wu Y, Fan Y, Kato M (2006) A feasibility study of microscale fabrication by ultrasonic-shoe centerless grinding. Precis Eng 30(2):201–210

    Article  Google Scholar 

  51. Zhong ZW, Rui ZY (2005) Grinding of single-crystal silicon using a microvibration device. Mater Manuf Process 20(4):687–696

    Article  Google Scholar 

  52. Egana I, Mendikute A, Urionaguena X, Alberdi R (2006) Towards intelligent dressing. IEEE Instrum Meas Mag 9(3):38–43

    Article  Google Scholar 

  53. Brinksmeier E, Heinzel C, Meyer L (2005) Development and application of a wheel based process monitoring system in grinding. CIRP Annals - Manufacturing Technology 54(1):301–304

    Article  Google Scholar 

  54. Su JC, Tarng YS (2006) Measuring wear of the grinding wheel using machine vision. Int J Adv Manuf Technol 31(1–2):50–60

    Article  Google Scholar 

  55. Zhang X, Krewet C, Kuhlenkötter B (2006) Automatic classification of defects on the product surface in grinding and polishing. Int J Mach Tools Manuf 46(1):59–69

    Article  Google Scholar 

  56. Xie J, Tamaki J (2006) In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing. J Mater Process Technol 180(1–3):83–90

    Article  Google Scholar 

  57. Tian YL, Zhang DW, Yan B (2007) Static characteristic analysis of a 3-DOF micropositioning table for grinding. Key Eng Mater 339:177–182

    Article  Google Scholar 

  58. Tian YL, Zhang DW, Chen HW (2006) Dynamic modeling of a novel 3-DOF micropositioning table for surface grinding control. Key Eng Mater 304–305:507–511

    Article  Google Scholar 

  59. Zhang D, Chetwynd DG, Liu X, Tian Y (2006) Investigation of a 3-DOF micro-positioning table for surface grinding. Int J Mech Sci 48(12):1401–1408

    Article  Google Scholar 

  60. Tian YL, Zhang DW, Yan B (2007) Performance investigation of a micropositioning table. Diffusion and Defect Data Pt.B: Solid State Phenomena 121–123:1285–1288

    Google Scholar 

  61. Tian Y, Zhang D, Chen H, Huang T (2005) Modeling of precision grinding process based on micro-positioning table and error compensation technology. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering 41(4):168–173

    Google Scholar 

  62. Tian Y, Zhang D, Yan B (2006) Dynamics and control of grinding machine with micropositioning workpiece table. Trans Tianjin Univ 12(3):157–162

    Google Scholar 

  63. Tian YL, Zhang DW, Yan B (2006) Kinematic characteristics of a 3-DOF micropositioning table for precision grinding. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology 39(7):777–782

    Google Scholar 

  64. Lee TS, Ting TO, Lin YJ, Htay T (2007) A particle swarm approach for grinding process optimization analysis. Int J Adv Manuf Technol 33(11–12):1128–1135

    Article  Google Scholar 

  65. Alagumurthi N, Palaniradja K, Soundararajan V (2007) Heat generation and heat transfer in cylindrical grinding process - A numerical study. Int J Adv Manuf Technol 34(5–6):474–482

    Article  Google Scholar 

  66. Krishna AG, Rao KM (2006) Multi-objective optimisation of surface grinding operations using scatter search approach. Int J Adv Manuf Technol 29(5):475–480

    Article  Google Scholar 

  67. Kruszynski BW, Lajmert P (2005) An intelligent supervision system for cylindrical traverse grinding. CIRP Annals - Manufacturing Technology 54(1):305–308

    Article  Google Scholar 

  68. Liu Q, Chen X, Gindy N (2007) Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding. Int J Adv Manuf Technol 33(9–10):940–951

    Article  Google Scholar 

  69. Sakakura M, Tsukamoto S, Fujiwara T, Inasaki I (2006) A skill-formation model for grinding operations. Mach Sci Technol 10(4):457–470

    Article  Google Scholar 

  70. Heinzel C, Grimme D (2006) Modeling of surface generation in contour grinding of optical molds. CIRP Annals - Manufacturing Technology 55(1):581–584

    Article  Google Scholar 

  71. Rentsch R, Inasaki I (2006) Effects of fluids on the surface generation in material removal processes - Molecular dynamics simulation. CIRP Annals - Manufacturing Technology 55(1):601–604

    Article  Google Scholar 

  72. Wang SB, Wu CF (2006) Selections of working conditions for creep feed grinding. Part(III): Avoidance of the workpiece burning by using improved BP neural network. Int J Adv Manuf Technol 28(1–2):31–37

    Article  Google Scholar 

  73. Meneghello R, Concheri G, Savio G, Comelli D (2006) Surface and geometry error modeling in brittle mode grinding of ophthalmic lenses moulds. Int J Mach Tools Manuf 46(12–13):1662–1670

    Article  Google Scholar 

  74. Nandi AK, Banerjee MK (2005) (655–664) FBF-NN-based modelling of cylindrical plunge grinding process using a GA. J Mater Process Technol 162–163(SPEC. ISS.):655–664

    Article  Google Scholar 

  75. Lizarralde R, Montejo M, Barrenetxea D, Marquinez JI, Gallego I (2006) Intelligent grinding: Sensorless instabilities detection. IEEE Instrum Meas Mag 9(3):30–37

    Article  Google Scholar 

  76. Fredj NB, Amamou R (2006) Ground surface roughness prediction based upon experimental design and neural network models. Int J Adv Manuf Technol 31(1–2):24–36

    Article  Google Scholar 

  77. Maksoud TMA (2005) Heat transfer model for creep-feed grinding. J Mater Process Technol 168(3):448–463

    Article  Google Scholar 

  78. Hecker RL, Liang SY, Wu XJ, Xia P, Jin DGW (2007) Grinding force and power modeling based on chip thickness analysis. Int J Adv Manuf Technol 33(5–6):449–459

    Article  Google Scholar 

  79. Fan X, Miller MH (2006) Force analysis for grinding with segmental wheels. Mach Sci Technol 10(4):435–455

    Article  Google Scholar 

  80. Heinzel C, Bleil N (2007) The use of the size effect in grinding for work-hardening. CIRP Annals - Manufacturing Technology 56(1):327–330

    Article  Google Scholar 

  81. Brinksmeier E, Bleil N (2007) Using the size effect of specific energy in grinding for work hardening. Int J Manuf Technol Manag 12(1–3):259–269

    Article  Google Scholar 

  82. Warren AW, Guo YB (2006) On the clarification of surface hardening by hard turning and grinding. Trans North Am Manuf Res Inst SME 34:309–316

    Google Scholar 

  83. Hashimoto F, Guo YB, Warren AW (2006) Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Annals - Manufacturing Technology 55(1):81–84

    Article  Google Scholar 

  84. Warren AW, Guo YB, Weaver ML (2006) The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf Coat Technol 200(11):3459–3467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z.W., Venkatesh, V.C. Recent developments in grinding of advanced materials. Int J Adv Manuf Technol 41, 468–480 (2009). https://doi.org/10.1007/s00170-008-1496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1496-3

Keywords

Navigation