Skip to main content
Log in

On the material flow in FSW of T-joints: Influence of geometrical and tecnological parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) now definitively reached a large interest in the scientific community and what is more in the industrial environment, due to the advantages of such solid state welding process with respect to the classic ones. The latter aspects are relevant also with reference to joints characterized by a complex geometry. What is more, advanced FEM tools permit to develop effective engineering of the processes; quantitative results can be acquired from numerical simulations once basic information, as the process mechanics and the material flow, are certain. Material flow plays a fundamental role in FSW since it determines the effectiveness of the joints or, in turn, the insurgence of defects. In the paper, the material flow in the FSW of aluminum alloys T-joints is investigated at the varying of the most relevant technological and geometrical parameters with numerical simulations and experiments. In particular, to investigate the metal flow, a wide campaign of experimental tests and observations was developed utilizing a thin foil of brass as marker, placed at the interface of the two blanks to be welded. Some relevant conclusions on the process mechanics and on the actual material flow determining the material bonding are outlined, permitting an insight of the FSW of T-joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teng TL, Fung CP, Chang PH, Yang WC (2001) Analysis of residual stresses and distortions in T-joint fillet welds. Int J Press Vessels Piping 523–538

  2. Mashiri FR, Zhao XL, Grundy P (2004) Stress concentration factors and fatigue behaviour of welded thin-walled CHS-SHS T-joints in-plane bending. Eng Structures 26:1861–1865, doi:10.1016/j.engstruct.2004.06.010

    Article  Google Scholar 

  3. Carpinteri A, Birghenti R, Huth H, Vantadori S (2005) Fatigue growth of a surface crack in a welded T-joint. Int J Fatigue 27:59–69, doi:10.1016/j.ijfatigue.2004.05.007

    Article  Google Scholar 

  4. Shaikh H, Khatak HS, Mahendran N, Sethi VK (2003) Failure analysis of a T-joint of AISI type 316L stainless steel. Eng Fail Anal 10:113–118, doi:10.1016/S1350-6307(02)00040-7

    Article  Google Scholar 

  5. Pang HL, Pukas SR (1989) Residual stress measurements in a Cruci-form welded joint using hole drilling and strain gauges. Strain 25:7–14

    Article  Google Scholar 

  6. Finch DM, Burdekin FM (1992) Effect of welding residual stresses on significance of defects in various types of welded joints. Eng Fract Mech 41(5):721.735

    Google Scholar 

  7. Ma NX, Ueda Y, Murakawa H, Madea H (1995) FEM analysis of 3D welding residual stresses and angular distortion in T-type fillet welds. Trans JWRI 24(2):115–122

    Google Scholar 

  8. Fratini L, Buffa G, Filice L, Gagliardi F (2006) FSW of AA6082-T6 T-joints: process engineering and performance measurement. J Eng Manuf Part B, ISSN: 0954-4054 220(5):669–676

    Article  Google Scholar 

  9. Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminium alloy. J Mater Proc Tech 142:692–696, doi:10.1016/S0924-0136(03)00806-9

    Article  Google Scholar 

  10. Rhodes CG, Mahoney WH, Bingel MW, Spurling RA, Bampton CC (1987) Effects of friction stir welding on microstructure of 7075 aluminium. Scr Mater 36(1):69–75, doi:10.1016/S1359-6462(96)00344-2

    Article  Google Scholar 

  11. Guerra M, Schmidt C, McClure LC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101, doi:10.1016/S1044-5803(02)00362-5

    Article  Google Scholar 

  12. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T654 aluminium. Acta Mater 51:713–729, doi:10.1016/S1359-6454(02)00449-4

    Article  Google Scholar 

  13. Shigematsu I, Kwon YJ, Suzuki K, Imai T, Saito N (2003) Joining of 5083 and 6061 aluminium alloys by friction stir welding. J Mater Sci Lett 22:343–356, doi:10.1023/A:1022688908885

    Article  Google Scholar 

  14. Lee WB, Yeon YM, Jung SB (2003) The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater Sci Eng A355:154–159

    Google Scholar 

  15. Barcellona A, Buffa G, Fratini L (2004) Process parameters analysis in friction stir welding of AA6082-T6 sheets, Keynote paper of the VII ESAFORM Conference 371–374

  16. Peel M, Steuwer A, Preuss M, Withers JP (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801, doi:10.1016/S1359-6454(03)00319-7

    Article  Google Scholar 

  17. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43:605–615, doi:10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  18. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157, doi:10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  19. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. Trans ASME 125:138–145

    Google Scholar 

  20. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int J Mach Tools Manuf 43:1319–1326, doi:10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  21. Lockwood WD, Reynolds AP (2003) Simulation of the global response of a friction stir weld using local constitutive behavior. Mater Sci Eng A 339:35–42, doi:10.1016/S0921-5093(02)00116-8

    Article  Google Scholar 

  22. Xu S, Deng X (2002) A three-dimensional model for the friction-stir welding process, Proceedings of the 21th Southestern Conference on Theoretical and Applied Mechanics, Orlando

  23. Xu S, Deng X (2003) Two and three dimensional finite element models for the friction stir welding process, Proceedings of the 4th International Symposium on Friction Stir Welding, Park City

  24. Deng X, Xu S (2001) Solid mechanics simulation of friction stir welding process. Trans NAMRI/SME. SME 29:631–638

    Google Scholar 

  25. Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based FEM model for friction stir welding-model development. Mater Sci Eng A 419(1–2):389–396, doi:10.1016/j.msea.2005.09.040

    Google Scholar 

  26. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419(1–2):381–388, doi:10.1016/j.msea.2005.09.041

    Google Scholar 

  27. Li Y, Murr LE, McClure JC (1999) Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminium to 6061 aluminium. Mater Sci Eng A 271:213–223, doi:10.1016/S0921-5093(99)00204-X

    Article  Google Scholar 

  28. Fratini L, Buffa G, Palmeri D, Hua J, Shivpuri R (2006) Material flow in FSW of AA7075-T6 butt joints: continuous dynamic recrystallization phenomena. ASME J Eng Mater Technol 128:428–435, doi:10.1115/1.2204946

    Article  Google Scholar 

  29. Fratini L, Buffa G, Palmeri D, Hua J, Shivpuri R (2006) Material flow in FSW of AA7075-T6 butt joints: numerical simulations and experimental verifications. Sci Technol Weld Join 11(4):412–421, doi:10.1179/174329306X113271

    Article  Google Scholar 

  30. Buffa G, Fratini L, Micari F, Shivpuri R (2008) Material flow in FSW of T-joints: experimental and numerical analysis. International Journal of Material Forming, doi:10.1007/s12289-008–0137-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fratini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratini, L., Buffa, G., Micari, F. et al. On the material flow in FSW of T-joints: Influence of geometrical and tecnological parameters. Int J Adv Manuf Technol 44, 570–578 (2009). https://doi.org/10.1007/s00170-008-1836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1836-3

Keywords

Navigation