Skip to main content
Log in

Application of the hydroforming strain- and stress-limit diagrams to predict necking in metal bellows forming process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to predict the initiation of necking in metal bellows forming process, a methodology for determination of the forming limit diagram and the forming limit stress diagram is represented in this paper. The methodology is based on the Marciniak and Kuczynski (M–K) model. Comparison between the experimental and theoretical results for hydroforming stress and strain-limit diagrams as predicted by different methods indicates that the present approach is suitable for prediction of necking in tube hydroforming processes. Afterwards, the implementation of the hydroforming strain- and stress-limit diagrams into finite element numerical simulations for the forming of the metal bellows is established. A satisfactory agreement between the finite element method (FEM) and test results is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satoshi I, Hiroshi K, Masanori K (2000) Evaluation of mechanical behavior of new type bellows with two directional convolutions. Nucl Eng Des 197(1, 2):107–114

    Google Scholar 

  2. Lee SW (2002) Study on the forming parameters of the metal bellows. J Mater Proc Tech 130–131:47–53. doi:10.1016/S0924-0136(02)00787-2

    Article  Google Scholar 

  3. Hyun KB, Yong LM, Man SS, Hoon MY (2007) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Proc Tech 194(1–3):1–6. doi:10.1016/j.jmatprotec.2007.02.029

    Google Scholar 

  4. Gh F Mosavi Mashhadi M., Norouzifard V. (2008). Evaluation of effective parameters in metal bellows forming process. J Mater Process Technol (in press). doi:10.1016/j.jmatprotec.2008.07.057

  5. Arrieux R, Bedrin C, Bovin M (1982) Determination of an intrinsic forming limit stress diagram for isotropic sheets. In: Proceedings of the 12th IDDRG congress, Santa Margherita, Ligure. 2, pp. 61-71

  6. Stoughton TB (2000) A general forming limit criterion for sheet metal forming. Int J Mech Sci 42(1):1–27. doi:10.1016/S0020-7403(98)00113-1

    Article  MATH  Google Scholar 

  7. Stoughton TB, Zhu X (2004) Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD. Int J Plast 20(8–9):1463–1486. doi:10.1016/j.ijplas.2003.11.004

    Article  MATH  Google Scholar 

  8. Hashemi R (2007) Consideration of path effects on prediction of forming limit diagrams, M.S. Thesis, Department of Mechanical Engineering, Sharif University of Technology

  9. Assempour A, Hashemi R, Abrinia K, Ganjiani M, Masoumi E (2009) A methodology for prediction of forming limit stress diagrams considering the strain path effect. Comput Mater Sci 45(2):195–204. doi:10.1016/j.commatsci.2008.09.025

    Article  Google Scholar 

  10. Wu PD, Graf A, MacEwen SR, Lloyd DJ, Jain M, Neale KW (2005) On forming limit stress diagram analysis. Int J Solids Struct 42(8):2225–2241. doi:10.1016/j.ijsolstr.2004.09.010

    Article  Google Scholar 

  11. Butuc MC, Gracio JJ, Barata da Rocha A (2006) An experimental and theoretical analysis on the application of stress-based forming limit criterion. Int J Mech Sci 48(4):414–429. doi:10.1016/j.ijmecsci.2005.11.007

    Article  Google Scholar 

  12. Zimniak Z (2000) Implementation of the forming limit stress diagram in FEM simulations. J Mater Process Technol 106(1–3):261–266. doi:10.1016/S0924-0136(00)00627-0

    Article  Google Scholar 

  13. Chen MH, Gao L, Zuo DW, Wang M (2007) Application of the forming limit stress diagram to forming limit prediction for multi-step forming of auto panels. J Mater Process Technol 187–188:173–177. doi:10.1016/j.jmatprotec.2006.11.178

    Article  Google Scholar 

  14. Kim J, Kim YW, Kang BS, Hwan SM (2004) Finite element analysis for bursting failure prediction in bulge forming of a seamed tube. Finite Elem Anal Des 40:953–966. doi:10.1016/j.finel.2003.05.003

    Article  Google Scholar 

  15. Xing HL, Makinouchi A (2001) Numerical analysis and design for tubular hydroforming. Int J Mech Sci 43(4):1009–1026. doi:10.1016/S0020-7403(00)00046-1

    Article  MATH  Google Scholar 

  16. Tirosh J, Neuberger A, Shirizly A (1996) On tube expansion by internal fluid pressure with additional compressive stress. Int J Mech Sci 38:839–851. doi:10.1016/0020-7403(95)00113-1

    Article  Google Scholar 

  17. Xia ZC (2001) Failure analysis of tubular hydroforming. J Eng Mater Technol 123:423–429. doi:10.1115/1.1394966

    Article  Google Scholar 

  18. Nefussi G, Combescure A (2002) Coupled buckling and plastic instability for tube hydroforming. Int J Mech Sci 44(5):899–914. doi:10.1016/S0020-7403(02)00031-0

    Article  MATH  Google Scholar 

  19. Asnafi N (1999) Analytical modelling of tube hydroforming. Thin-Walled Struct 34:295–330. doi:10.1016/S0263-8231(99)00018-X

    Article  Google Scholar 

  20. Kim J, Kim SW, Song WJ, Kang BS (2004) Analytical approach to bursting in tube hydroforming using diffuse plastic instability. Int J Mech Sci 46(10):1535–1547. doi:10.1016/j.ijmecsci.2004.09.001

    Article  MATH  Google Scholar 

  21. Kim J, Kim SW, Song WJ, Kang BS (2005) Analytical approach to bursting in tube hydroforming using diffuse plastic instability. Int J Mech Sci 47(7):1023–1037. doi:10.1016/j.ijmecsci.2005.02.011

    Article  Google Scholar 

  22. Kim SW, Song WJ, Kang BS, Kim J (2008) Bursting failure prediction in tube hydroforming using FLSD. Int J Adv Manuf Technol 41:311–322. doi:10.1007/s00170-008-1488-3

    Article  Google Scholar 

  23. Marciniak Z, Kuczynski K (1967) Limit strains in the process of stretch-forming sheet metal. Int J Mech Sci 9:609–620. doi:10.1016/0020-7403(67)90066-5

    Article  Google Scholar 

  24. Zhao L, Sowerby R, Sklad MP (1996) A theoretical and experimental investigation of limit strain in sheet metal forming. Int J Mech Sci 38(12):1307–1317. doi:10.1016/0020-7403(96)00014-8

    Article  Google Scholar 

  25. Ganjiani M, Assempour A (2007) An improved analytical approach for determination of forming limit diagrams considering the effects of yield functions. J Mater Proc Tech 182(1–3):598–607. doi:10.1016/j.jmatprotec.2006.09.025

    Article  Google Scholar 

  26. Assempour A, Safikhani AR, Hashemi R (2009) An improved strain gradient approach for determination of deformation localization and forming limit diagrams. J Mater Process Technol 209(4):1758–1769. doi:10.1016/j.jmatprotec.2008.04.030

    Article  Google Scholar 

  27. Safikhani AR, Hashemi R, Assempour A (2009) Some numerical aspects of necking solution in prediction of sheet metal forming limits by strain gradient plasticity. J. Mater Des 30(3):727–740

    Google Scholar 

  28. Ahmadi S, Eivani AR, Akbarzadeh A (2008) An experimental and theoretical study on the prediction of forming limit diagrams using new BBC yield criteria and M–K analysis. Comput Mater Sci 4(4):1272–1280. doi:10.1016/j.commatsci.2008.08.013

    Google Scholar 

  29. Ganjiani M, Assempour A (2007) Implementation of a robust algorithm for prediction of forming limit diagrams. J Mater Eng Perform 17(1):1–6. doi:10.1007/s11665-007-9121-4

    Article  Google Scholar 

  30. Asnafi N, Skogsga°rdh A (2000) Theoretical and experimental analysis of stroke-controlled tube Hydroforming. Mater Sci Eng A 279(1, 2):95–110. doi:10.1016/S0921-5093(99)00646-2

    Google Scholar 

  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77: The art of scientific computing, Chapter 9, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  32. Hill R (1948) A theory of the yielding and plastic flow of anisotropic materials. Proc R Soc Lond A Math Phys Sci 193:281–297. doi:10.1098/rspa.1948.0045

    Article  MATH  Google Scholar 

  33. Simha CHM, Gholipour J, Bardelcik A, Worswick MJ (2007) Prediction of necking in tubular hydroforming using an extended stress-based flc. ASME J Eng Mater Technol 129(1):136–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, R., Faraji, G., Abrinia, K. et al. Application of the hydroforming strain- and stress-limit diagrams to predict necking in metal bellows forming process. Int J Adv Manuf Technol 46, 551–561 (2010). https://doi.org/10.1007/s00170-009-2121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2121-9

Keywords

Navigation