Skip to main content
Log in

A hybrid contact state analysis methodology for robotic-based adjustment of cylindrical pair

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The peg-in-hole insertion and adjustment operation is one of the most common tasks in the robotic and automatic assembly processes. Fine motion strategies associated with adjustment operations on a peg-in-hole are fundamental manipulations that can be utilised in dynamic assembly and reconfigurable workholding or fixturing systems. This paper presents a comprehensive study of robotic-based height adjustment of a cylindrical pair based on maintaining minimum contact forces between the links. The outer link is held by the end-effector of a six-DOF (Degrees of freedom) serial articulated robot manipulator. The environment represented by the inner link can be either static or dynamic. A force-based approach and a d value approach are established to determine the type of contact that exists between the links of a cylindrical pair, and to extract control parameters. Based on the comparison and analysis of these two approaches, a hybrid methodology is established by combining a d value approach with a force-based approach for contact state determination. Formulations capable of extracting necessary control parameters, which ensure minimum contact forces between the links, are established from both planar and spatial viewpoints under both static and dynamic environmental conditions. Experimental results demonstrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Waas Tilakaratna P, Shirinzadeh B, Alici G (2003) Contact type determination for cylindrical pair adjustment. Proceeding of the IEEE/ASME International Conference on Advance Intelligent Mechatronics, Kobe, Japan, pp 326–331

  2. Klingajay M, Seneviratne LD, Althoefer K (2003) Identification of threaded fastening parameters using the Newton Raphson Method. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, pp 2055–2060

  3. Mason MT (1986) Mechanics and planning of manipulator pushing operations. Int J Rob Res 5(3):53–71

    Article  Google Scholar 

  4. Nicolson EJ, Fearing RS (1993) Compliant control of threaded fastener insertion. Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, pp 484–490

    Google Scholar 

  5. Peshkin MA, Sanderson AC (1986) Manipulation of a sliding object. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, pp 233–239

    Google Scholar 

  6. Shen YL, Shirinzadeh B (2001) Dynamic analysis of reconfigurable fixture construction by a manipulator. Robot Comput-Integr Manuf 17(5):367–377

    Article  Google Scholar 

  7. Brokowski M, Peshkin M, Goldberg K (1995) Optimal curved fences for part alignment on a belt. Transactions of the ASME Journal of Mechanical Design 117(1):27–35

    Article  Google Scholar 

  8. Peshkin MA, Sanderson AC (1988) The motion of a push sliding workpiece. IEEE J Robot Autom 4(6):569–598

    Article  Google Scholar 

  9. Peshkin MA, Sanderson AC (1988) Planning robotic manipulations strategies for workpieces. IEEE J Robot Autom 4(5):524–531

    Article  Google Scholar 

  10. Rusaw S, Gupta K, Payandeh S (2001) Flexible part orienting using rotation direction and force measurements. Int J Rob Res 20(6):484–505

    Article  Google Scholar 

  11. Rusaw S, Gupta K, Payandeh S (1998) Orienting polygons with fences over a conveyor belt: empirical observations. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, pp 831–836

  12. Rusaw S, Gupta K, Payandeh S (1999) Part orienting with a force/torque sensor. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, pp 2545–2550

    Google Scholar 

  13. Lefebvre T, Bruyninckx H, De Schutter J (2003) Polyhedral contact formation modeling and identification for autonomous compliant motion. IEEE Trans Robot Autom 19(3):26–41

    Article  Google Scholar 

  14. Lefebvre T, Bruyninckx H, De Schutter J (2005) Polyhedral contact formation identification for autonomous compliant motion: exact nonlinear Bayesian filtering. IEEE Trans Robot Autom 21(1):124–129

    Google Scholar 

  15. Gadeyne K, Lefebvre T, Bruyninck H (2005) Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation. Int J Rob Res 24(8):615–630

    Article  Google Scholar 

  16. Klingajay M, Seneviratne LD, Althoefer K (2002) Parameter estimation during automated screw insertions. Proceedings of the IEEE International Conference on Industrial Technology, Bangkok, pp 1019–1024

    Google Scholar 

  17. Seneviratne LD, Visuwan P, Althoefer K (1999) Weightless neural network based monitoring of screw fastenings. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, pp 561–566

    Google Scholar 

  18. Shirinzadeh B (1995) Flexible and automated workholding systems. Ind Rob 22(2):29–34

    Article  Google Scholar 

  19. Brost RC, Goldberg KY (1996) A complete algorithm for designing planar fixtures using modular components. IEEE Trans Robot Autom 12(1):31–46

    Article  Google Scholar 

  20. Wallack AS, Canny JF (1997) Planning for modular and hybrid fixtures. Algorithmica 19(1–2):40–60

    Article  MathSciNet  Google Scholar 

  21. Shirinzadeh B, Tie Y (1995) Experimental investigation of the performance of a reconfigurable fixturing system. Int J Adv Manuf Technol 10(5):330–341

    Article  Google Scholar 

  22. Asada HH, By AH (1985) Kinematic analysis and design for automatic workpart fixturing assembly. Proceedings of the 2nd International Symposium of Robotics Research, Kyoto, pp 237–244

    Google Scholar 

  23. Shirinzadeh B (2002) Flexible fixturing for workpiece positioning and constraining. Assem Autom 22(2):112–120

    Article  Google Scholar 

  24. Qian WH, Qiao H (2002) An efficient algorithm for computing object poses in a modular fixture or gripper. J Robot Syst 19(3):99–114

    Article  MATH  Google Scholar 

  25. Shirinzadeh B (1994) CAD-based design and analysis system for reconfigurable fixtures in robotic assembly. Comput Control Eng J 5(1):41–46

    Article  Google Scholar 

  26. Wardak KR, Tasch U, Charalambides R (2001) Optimal fixture design for drilling through deformable plate workpieces—Part I: model formulation. J Manuf Syst 20(1):23–32

    Article  Google Scholar 

  27. Shirinzadeh B (1996) A CAD-based hierarchical approach to interference detection among fixture modules in a reconfigurable fixturing system. Journal of Robotics & Computer-Integrated Manufacturing 12(1):41–53

    Article  Google Scholar 

  28. Sudsang A, Ponce J, Srinivasa N (2000) Grasping and in-hand manipulation: geometry and algorithm. Algorithmica 26(3–4):466–493

    Article  MATH  MathSciNet  Google Scholar 

  29. Shirinzadeh B (1993) Issues in the design of the reconfigurable fixture modules for robotic assembly. J Manuf Syst 12(1):1–14

    Article  Google Scholar 

  30. Zohoor H, Shahinpoor M (1991) Dynamic analysis of peg-in-hole insertion for manufacturing automation. J Manuf Syst 10(2):99–108

    Article  Google Scholar 

  31. De Waas Tilakaratna P, Shirinzadeh B, Alici G (2004) Experimental investigation of 2D cylindrical pair height adjustment in a static environment. Proceedings of the 3rd IFAC Symposium on Mechatronic Systems, Sydney, pp 663–668

    Google Scholar 

  32. Shirinzadeh B (1998) Laser-interferometry-based tracking for dynamic measurements. Industrial Robot: An International Journal 25(1):35–41

    Article  Google Scholar 

  33. Teoh PL, Shirinzadeh B, Foong CW, Alici G (2002) The measurement uncertainties in laser interferometry-based sensing and tracking technique. International Journal of Measurement 32(2):135–150

    Article  Google Scholar 

  34. Alici G, Shirinzadeh B (2005) Enhanced stiffness modelling, identification and characterisation for robot manipulators. IEEE Trans Robot 21(4):554–564

    Article  Google Scholar 

  35. Shirinzadeh B, Teoh PL, Tian Y, Dalvand MM, Zhong Y, Liaw HC (2010) Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots. Robot Comput-Integr Manuf 26(1):74–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirinzadeh, B., Zhong, Y., Tilakaratna, P.D.W. et al. A hybrid contact state analysis methodology for robotic-based adjustment of cylindrical pair. Int J Adv Manuf Technol 52, 329–342 (2011). https://doi.org/10.1007/s00170-010-2705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2705-4

Keywords

Navigation