Skip to main content
Log in

A review of the causes of bullwhip effect in a supply chain

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A review of the past research studies on the causes of bullwhip effect is presented in this paper. This paper is an effective study from the point of view that it presents a detailed classified study of the overall research studies on the effect of both the operational and the behavioral factors on bullwhip effect. A total of 19 causes of bullwhip effect have been shown here. We have identified the various gaps of research in the past research studies. An overview of the steps taken by the industries in order to tackle the bullwhip effect is also provided at the end of this paper. Directions for further research studies are also provided in each subsection of this study and at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCullen P, Towill D (2002) Diagnosis and reduction of bullwhip in supply chains. Supply Chain Manag Int J 7(3):164–179

    Article  Google Scholar 

  2. Disney SM, GrubbstrÖm RW (2004) Economic consequences of a production and inventory control policy. Int J Prod Res 42(17):3419–3431

    Article  MATH  Google Scholar 

  3. Erkan B, Lenny Koh SC, Gunasekaran A, Kazim S, Ekrem T (2008) The role of forecasting on bullwhip effect for E-SCM applications. Int J Prod Econ 113(1):193–204

    Article  Google Scholar 

  4. Sunil C, Meindl P, Kalra DV (2007) Supply chain management: strategy, planning and operation, 3rd edn. Pearson Education, India

    Google Scholar 

  5. Geunes Joseph, Pardalos Panos M. and Romeijn H. Edwin (eds) (2002) Supply chain management: models, applications, and research directions. Kluwer Academic Publishers, Dordrecht, The Netherlands

  6. Handfield BR, Nichols LE Jr (2002) Supply chain redesign: transforming supply chains into integrated value systems. Financial Times Prentice Hall, NJ

    Google Scholar 

  7. Hugos M (2003) Essentials of supply chain management. Wiley, Hoboken

    Google Scholar 

  8. Simon Herbert A (1952) On the application of servomechanism theory in the study of production control. Econometrica 20(2):247–268

    Article  MathSciNet  Google Scholar 

  9. Forrester JW (1958) Industrial dynamics—a major breakthrough for decision makers. Harv Bus Rev 36(4):37–66

    Google Scholar 

  10. Sterman JD (1989) Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment. Manage Sci 35(3):321–339

    Article  Google Scholar 

  11. Blanchard OJ (1983) The production and inventory behavior of the American Automobile Industry. J Polit Econ 91(3):365–400

    Article  Google Scholar 

  12. Blinder AS (1982) Inventories and sticky prices: more on the microfoundations of macroeconomics. Am Econ Rev 72(3):334–348

    Google Scholar 

  13. Blinder AS (1986) Can the production smoothing model of inventory behavior be saved? Q J Econ 101(3):431–454

    Article  Google Scholar 

  14. Kahn JA (1987) Inventories and the volatility of production. Am Econ Rev 77(4):667–679

    Google Scholar 

  15. Burbidge JL (1983) Automated production control with a simulation capability. Proceedings of IFIP Conference on System Modeling and Optimization, Copenhagen, Denmark, 25–29 July 1983, pp. 1–14.

  16. Sun HX and Ren YT (2005) The Impact of forecasting methods on bullwhip effect in supply chain management. IEEE International Engineering Management Conference I, 11–13 September, pp. 215–219.

  17. Wang J, Jia J, Takahashi K (2005) A study on the impact of uncertain factors on information distortion in supply chains. Prod Plan Control 16(1):2–11

    Article  Google Scholar 

  18. Geary S, Disney SM, Towill DR (2006) On bullwhip in supply chains—historical review, present practice and expected future impact. Int J Prod Econ 101(1 SPEC. ISS):2–18

    Article  Google Scholar 

  19. Lee HL, Padmanabhan V, Seungjin W (1997) The bullwhip effect in supply chains. Sloan Manage Rev 38(3):93–102

    Google Scholar 

  20. Heydari Jafar, Kazemzadeh RB, SK Chaharsooghi (2009) A study of lead time variation impact on supply chain performance. Int J Adv Manuf Technol 40(11–12):1206–1215

    Article  Google Scholar 

  21. Wang Xiaojing, Liu Zhixue, Zheng Changzheng and Quan Chunguang (2008) The Impact of Lead-time on Bullwhip Effect in Supply Chain. Proceedings–ISECS International Colloquium on Computing, Communication, Control, and Management, Guangzhou, 3-4 Aug. 2008, pp. 93-97

  22. Huang Lizhen and Liu Yongping (2008) Supply chain dynamics under the sustainable development. 2008 International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, 12-14 Oct. 2008, pp. 1-6

  23. Chandra C, Grabis J (2005) Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand. Eur J Oper Res 166(2):337–350

    Article  MathSciNet  MATH  Google Scholar 

  24. Aharon B-T, Boaz G, Shimrit S (2009) Robust multi-echelon multi-period inventory control. Eur J Oper Res 199(3):922–935

    Article  MATH  Google Scholar 

  25. Jakšič M, Rusjan B (2008) The effect of replenishment policies on the bullwhip effect: a transfer function approach. Eur J Oper Res 184(3):946–961

    Article  MATH  Google Scholar 

  26. Su C-T, Wong J-T (2008) Design of a replenishment system for a stochastic dynamic production/forecast lot-sizing problem under bullwhip effect. Expert Syst Appl 34(1):173–180

    Article  Google Scholar 

  27. Zhang L, Zhang Q (2007) A comparison of system dynamics between time-based and quantity-based VMI consolidation replenishment system. Proceedings of IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 18–20 Nov. 2007, pp. 1568–1574

  28. Lee HL, Padmanabhan V, Whang S (1997) Information distortion in a supply chain: the bullwhip effect. Manage Sci 43(4):546–558

    Article  MATH  Google Scholar 

  29. Sohn SY, Lim M (2008) The effect of forecasting and information sharing in SCM for multi-generation products. Eur J Oper Res 186(1):276–287

    Article  MATH  Google Scholar 

  30. Lee HL, So KC, Tang CS (2000) The value of information sharing in a two-level supply chain. Manage Sci 46(5):626–643

    Article  Google Scholar 

  31. Zhao W, Wang D (2008) Application of information sharing to bullwhip effect restraining. Chinese Control and Decision Conference, Shandong, China, 2–4 July 2008, pp. 1143–1146.

  32. Agrawal S, Sengupta RN, Shanker K (2009) Impact of information sharing and lead time on bullwhip effect and on-hand inventory. Eur J Oper Res 192(2):576–593

    Article  MathSciNet  MATH  Google Scholar 

  33. Alony I, Munoz A (2007) The bullwhip effect in complex supply chains. 2007 International Symposium on Communications and Information Technologies Proceedings ,Darling Harbour, Sydney, Australia, 17–19 October, pp. 1355–1360.

  34. Moyaux T, Chaib-draa B, D’Amours S (2007) Information sharing as a coordination mechanism for reducing the bullwhip effect in a supply chain. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 37(3): 396–409

    Google Scholar 

  35. Croson R, Donohue K (2009) Impact of POS data sharing on supply chain management: an experimental study. Prod Oper Manag 12(1):1–11

    Article  Google Scholar 

  36. Steckel JH, Gupta S, Banerji A (2004) Supply chain decision making: will shorter cycle times and shared point-of-sale information necessarily help? Manage Sci 50(4):458–464

    Article  Google Scholar 

  37. Yan WD, Katok E (2006) Learning, communication, and the bullwhip effect. J Oper Manag 24(6):839–850

    Article  Google Scholar 

  38. Skiadas CH (1986) Innovation diffusion models expressing asymmetry and/or positively or negatively influencing forces. Technol Forecast Soc Change 30(4):313–330

    Article  Google Scholar 

  39. Mahajan V, Muller E, Bass FM (1990) New product diffusion models in marketing: a review and directions for research. J Mark 54(1):1–26

    Article  Google Scholar 

  40. Islam T, Meade N (1997) The diffusion of successive generations of a technology: a more general model. Technol Forecast Soc Change 56(1):49–60

    Article  Google Scholar 

  41. Chaharsooghi SK, Faramarzi H, Heydari J (2008) A simulation study on the impact of forecasting methods on the bullwhip effect in the supply chain. IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 Dec. 2008, pp. 1875–1879

  42. Chen F, Drezner Z, Ryan JK, Simchi-Levi D (2000) Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manage Sci 46(3):436–443

    Article  Google Scholar 

  43. Hosoda T, Disney SM (2004) An analysis of a three echelon supply chain model with minimum mean squared error forecasting. Second World Production and Operations Management Conference, Mexico, April 30–May 3, 2004, pp. 1–24.

  44. Chen F, Ryan JK, Simchi-Levi D (2000) The impact of exponential smoothing forecasts on the bullwhip effect. Nav Res Logist 47(4):269–286

    Article  MathSciNet  MATH  Google Scholar 

  45. Muth JF (1960) Optimal properties of exponentially weighted forecasts. J Am Stat Assoc 55(290):299–306

    Article  MATH  Google Scholar 

  46. Goodman ML (1974) A new look at higher-order exponential smoothing for forecasting. Oper Res 22(4):880–888

    Article  MATH  Google Scholar 

  47. Graves SC (1999) A single-item inventory model for a nonstationary demand process. Manuf Serv Oper Manag 1(1):50–61

    Article  Google Scholar 

  48. Zhang X (2004) The impact of forecasting methods on the bullwhip effect. Int J Prod Econ 88(1):15–27

    Article  Google Scholar 

  49. Alwan LC, Liu JJ, Yao D-Q (2003) Stochastic characterization of upstream demand processes in a supply chain. IIE Trans 35(3):207–219

    Article  Google Scholar 

  50. Reiner G, Fichtinger J (2009) Demand forecasting for supply processes in consideration of pricing and market information. Int J Prod Econ 118(1):55–62

    Article  Google Scholar 

  51. Sima K, Zhang Y, Ying M, Chen J (2007) The impact of forecasting with Kalman filter on the bullwhip effect. International Conference on Wireless Communications, Networking and Mobile Computing, Honolulu, Hawaii, USA, August 12–16, 2007, pp. 4698–4701.

  52. Chen YF, Disney SM (2007) The myopic order-up-to policy with a proportional feedback controller. Int J Prod Res 45(2):351–368

    Article  MATH  Google Scholar 

  53. Gaalman G, Disney SM (2006) State space investigation of the bullwhip problem with ARMA (1, 1) demand processes. Int J Prod Econ 104(2):327–339

    Article  Google Scholar 

  54. Luong HT, Phien NH (2007) Measure of bullwhip effect in supply chains: the case of high order autoregressive demand process. Eur J Oper Res 183(1):197–209

    Article  MATH  Google Scholar 

  55. Lynn GS, Schnaars SP, Skov RB (1999) A survey of new product forecasting practices in industrial high technology and low technology businesses. Ind Mark Manag 28(6):565–571

    Article  Google Scholar 

  56. Carbonneau R, Laframboise K, Vahidov R (2008) Application of machine learning techniques for supply chain demand forecasting. Eur J Oper Res 184(3):1140–1154

    Article  MATH  Google Scholar 

  57. Vapnik V, Golowich SE, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9 (Part III Theory). MIT, Cambridge, pp 281–287

    Google Scholar 

  58. Herbrich R, Keilbach M, Graepel T, Bollmann-Sdorra P, Obermayer K, Brenner T (Ed.) (1999) Neural networks in economics: background, applications and new developments. Advances in Computational Economics: Computational Techniques for Modelling Learning in Economics, Kluwer Academic Publishers 11(8): 169–193

  59. Liang W-Y, Huang C-C (2006) Agent-based demand forecast in multi-echelon supply chain. Decis Support Syst 42(1):390–407

    Article  Google Scholar 

  60. Swaminathan JM, Smith SF, Sadeh NM (1998) Modeling supply chain dynamics: a multiagent approach. Decis Sci 29(3):607–632

    Article  Google Scholar 

  61. Fu Y, Piplani R, de Souza R, Wu J (2000) Multi-agent enabled modeling and simulation towards collaborative inventory management in supply chains. Winter Simulation Conference Proceedings 2, Orlando, FL, USA, 10–13 December 2000, pp. 1763–1771.

  62. Kimbrough SO, Wu DJ, Zhong F (2002) Computers play the beer game: can artificial agents manage supply chains? Decis Support Syst 33(3):323–333

    Article  Google Scholar 

  63. McBurney P, Parsons S, Green J (2002) Forecasting market demand for new telecommunications services: an introduction. Telematics Inform 19(3):225–249

    Article  Google Scholar 

  64. Dejonckheere J, Disney SM, Lambrecht MR, Towill DR (2002) Transfer function analysis of forecasting induced bullwhip in supply chains. Int J Prod Econ 78(2):133–144

    Article  Google Scholar 

  65. Towill DR (1982) Dynamic analysis of an inventory and order based production control system. Int J Prod Res 20(6):671–687

    Article  Google Scholar 

  66. Warburton RDH, Disney SM (2007) Order and inventory variance amplification: the equivalence of discrete and continuous time analyses. Int J Prod Econ 110(1–2):128–137

    Article  Google Scholar 

  67. Cachon GP, Lariviere MA (1999) Capacity allocation using past sales: when to turn-and-earn. Manage Sci 45(5):685–703

    Article  Google Scholar 

  68. Cachon GP, Lariviere MA (1999) Capacity choice and allocation: strategic behavior and supply chain performance. Manage Sci 45(8):1091–1108

    Article  Google Scholar 

  69. Cachon GP, Fisher M (2000) Supply chain inventory management and the value of shared information. Manage Sci 46(8):1032–1048

    Article  Google Scholar 

  70. Higuchi T, Troutt MD (2004) Dynamic simulation of the supply chain for a short life cycle product—lessons from the Tamagotchi case. Comput Oper Res 31(7):1097–1114

    Article  MATH  Google Scholar 

  71. Holland W, Sodhi MS (2004) Quantifying the effect of batch size and order errors on the bullwhip effect using simulation. Int J Logistics Res Appl 7(3):251–261

    Article  Google Scholar 

  72. Disney SM, Potter AT, Gardner BM (2003) The impact of vendor managed inventory on transport operations. Transp Res E Logist Transp Rev 39(5):363–380

    Article  Google Scholar 

  73. Pujawan IN (2004) The effect of lot sizing rules on order variability. Eur J Oper Res 159(3):617–635

    Article  MathSciNet  MATH  Google Scholar 

  74. Potter A, Disney SM (2006) Bullwhip and batching: an exploration. Int J Prod Econ 104(2):408–418

    Article  Google Scholar 

  75. Riddalls CE, Bennett S (2001) The optimal control of batched production and its effect on demand amplification. Int J Prod Econ 72(2):159–168

    Article  Google Scholar 

  76. Yan XS, Robb DJ, Silver EA (2009) Inventory performance under pack size constraints and spatially-correlated demand. Int J Prod Econ 117(2):330–337

    Article  Google Scholar 

  77. Rong Y, Shen Z-JM, Snyder LV (2009) The impact of ordering behavior on order-quantity variability: a study of forward and reverse bullwhip effects. Flex Serv Manuf J 20(1–2):95–124

    Google Scholar 

  78. Lalwani CS, Disney SM, Towill DR (2006) Controllable, observable and stable state space representations of a generalized order-up-to policy. International journal of production economics 101(1 SPEC. ISS):172–184

    Article  Google Scholar 

  79. Childerhouse P, Disney SM, Towill DR (2008) On the impact of order volatility in the European automotive sector. Int J Prod Econ 114(1):2–13

    Article  Google Scholar 

  80. Hoberg K, Bradley JR, Thonemann UW (2007) Analyzing the effect of the inventory policy on order and inventory variability with linear control theory. Eur J Oper Res 176(3):1620–1642

    Article  MATH  Google Scholar 

  81. Veinott AF Jr (1965) Optimal policy for a multi-product, dynamic, nonstationary inventory problem. Manage Sci 12(3):206–222

    Article  MathSciNet  Google Scholar 

  82. Clark AJ, Scarf H (2004) Optimal policies for a multi-echelon inventory problem. Manage Sci 50(12):1782–1790

    Article  Google Scholar 

  83. Axsäter S, Rosling K (1993) Notes: installation vs. echelon stock policies for multilevel inventory control. Manage Sci 39(10):1274–1280

    Article  MATH  Google Scholar 

  84. Simon J, Naim M, Towill DR (1995) Dynamic analysis of a WIP compensated decision support system. Int J Manuf Syst Des 1(4):283–297

    Google Scholar 

  85. Towill DR, Evans GN, Cheema P (1997) Analysis and design of an adaptive minimum reasonable inventory control system. Prod Plann Control 8(6):545–557

    Article  Google Scholar 

  86. Tang O, Grubbström RW (2002) Rescheduling considerations for production planning using control theory. Int J Ind EngTheory Appl Pract 9(3):258–264

    Google Scholar 

  87. Disney SM, Towill DR (2002) A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. Int J Prod Res 40(1):179–204

    Article  MATH  Google Scholar 

  88. Disney SM, Towill DR (2005) Eliminating drift in inventory and order based production control systems. Proceedings of the Twelfth International Symposium on Inventories, Cardiff, 8 January 2005, International Journal of Production Economics 93–94(SPEC. ISS.): 331–344

  89. Disney SM, Towill DR (2003) The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chains. Int J Prod Econ 85(2):199–215

    Article  Google Scholar 

  90. Cachon G, Fisher M (1997) Campbell soup's continuous replenishment program: evaluation and enhanced inventory decision rules. Prod Oper Manag 6(3):266–276

    Article  Google Scholar 

  91. Liao C-J, Shyu C-H (1993) An analytical determination of lead time with normal demand. Int J Oper Prod Manage 11(9):72–78

    Article  Google Scholar 

  92. Ben-Daya M, Raouf A (1994) Inventory models involving lead time as a decision variable. J Oper Res Soc 45(5):579–582

    MATH  Google Scholar 

  93. Ouyang L-Y, Yeh N-C, Wu K-S (1996) Mixture inventory model with backorders and lost sales for variable lead time. J Oper Res Soc 47(6):829–832

    MATH  Google Scholar 

  94. Ryu SW, Lee KK (2003) A stochastic inventory model of dual sourced supply chain with lead-time reduction. Int J Prod Econ 81–82:513–524

    Article  Google Scholar 

  95. Bookbinder JH, Çakanyildirim M (1999) Random lead times and expedited orders in (Q, r) inventory systems. Eur J Oper Res 115(2):300–313

    Article  MATH  Google Scholar 

  96. Viswanathan S, Widiarta H, Piplani R (2007) Value of information exchange and synchronization in a multi-tier supply chain. Int J Prod Res 45(21):5057–5074

    Article  MATH  Google Scholar 

  97. Thonemann UW (2002) Improving supply-chain performance by sharing advance demand information. Eur J Oper Res 142(1):81–107

    Article  MATH  Google Scholar 

  98. Bowman EH (1963) Consistency and optimality in managerial decision making. Manage Sci 9(2):310–321

    Article  MathSciNet  Google Scholar 

  99. Boute RN (2007) Impact of replenishment rules with endogenous lead times on supply chain performance. Q J Oper Res 5(3):261–264

    Article  MATH  Google Scholar 

  100. Lee HT, Wu JC (2006) A study on inventory replenishment policies in a two- echelon supply chain system. Comput Ind Eng 51(2):257–263

    Article  Google Scholar 

  101. Watts ChA, Hahn CK, Sohn B-K (1994) Monitoring the performance of a reorder point system: a control chart approach. Int J Oper Prod Manage 14(2):51–61

    Article  Google Scholar 

  102. Pfohl H-C, Cullmann O, Stölzle W (1999) Inventory management with statistical process control: simulation and evaluation. J Bus Logist 20(1):101–120

    Google Scholar 

  103. Svensson G (2003) The bullwhip effect in intra-organisational echelons. Int J Phys Distrib Logist Manag 33(2):103–131

    Article  MathSciNet  Google Scholar 

  104. Özelkan EC, Çakanyildirim M (2009) Reverse bullwhip effect in pricing. Eur J Oper Res 192(1):302–312

    Article  MATH  Google Scholar 

  105. Hamister JW, Suresh NC (2008) The impact of pricing policy on sales variability in a supermarket retail context. Int J Prod Econ 111(2):441–455

    Article  Google Scholar 

  106. Mujaj Y, Leukel J, Kirn St (2007) A reverse pricing model for multi-tier supply chains. Proceedings of the 9th IEEE International Conference on E-Commerce Technology; The 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Services, Tokyo, 23–26 July 2007, pp. 331–338.

  107. Gerstner E, Hess JD (1995) Pull promotions and channel coordination. Mark Sci 14(1):43–60

    Article  Google Scholar 

  108. Tyagi RK (1999) On the effects of downstream entry. Manage Sci 45(1):59–73

    Article  Google Scholar 

  109. Corbett Charles J, Karmarkar Uday S (2001) Competition and structure in serial supply chains with deterministic demand. Manage Sci 47(7):966–978

    Article  Google Scholar 

  110. Paik S-K, Bagchi PK (2007) Understanding the causes of the bullwhip effect in a supply chain. Int J Retail Distrib Manag 35(4):308–324

    Article  Google Scholar 

  111. Taylor DH (1999) Measurement and analysis of demand amplification across the supply chain. Int J Logistics Manag 10(2):55–70

    Article  Google Scholar 

  112. Nienhaus J, Ziegenbein A, Schoensleben P (2006) How human behaviour amplifies the bullwhip effect—a study based on the beer distribution game online. Prod Plan Control 17(6):547–557

    Article  Google Scholar 

  113. Hult GTM, Ketchen DJ Jr, Nichols EL Jr (2003) Organizational learning as a strategic resource in supply management. J Oper Manage 21(5):541–556

    Article  Google Scholar 

  114. Zarandi MHF, Pourakbar M, Turksen IB (2008) A Fuzzy agent-based model for reduction of bullwhip effect in supply chain systems. Expert Syst Appl 34(3):1680–1691

    Article  Google Scholar 

  115. De La Fuente D, Lozano J (2007) Application of distributed intelligence to reduce the bullwhip effect. Int J Prod Res 45(8):1815–1833

    Article  MATH  Google Scholar 

  116. Guo H, Zhu Y, Chang C, Zhou X (2008) H∞ control of bullwhip effects in closed-loop supply chain networks with two chains cooperation. Proceedings of the World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008, pp. 2206–2211.

  117. Huang X-Y, Yan N-N, Guo H-F (2007) An H∞ control method of the bullwhip effect for a class of supply chain system. Int J Prod Res 45(1):207–226

    Article  MATH  Google Scholar 

  118. Liu B, Huang X-Y, Yan N-N (2006) H∞ control of bullwhip effect in dual-channel with E-markets. Proceedings of the World Congress on Intelligent Control and Automation 1, Dalian, China, 21–23 June 2006, pp. 1929–1932.

  119. Lu J, Humphreys P, McIvor R, Maguire L (2007) Employing genetic algorithms to minimise the bullwhip effect in a supply chain. 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Chicago, IL, 22–24 July 2009, pp. 1527–1531.

  120. O'donnell T, Maguire L, McIvor R, Humphreys P (2006) Minimizing the bullwhip effect in a supply chain using genetic algorithms. Int J Prod Res 44(8):1523–1543

    Article  MATH  Google Scholar 

  121. Xiong G, Helo P (2006) An application of cost-effective fuzzy inventory controller to counteract demand fluctuation caused by bullwhip effect. Int J Prod Res 44(24):5261–5277

    Article  MATH  Google Scholar 

  122. Zarandi MHF, Pourakbar M, Turksen IB (2006) An intelligent agent-based system for reduction of bullwhip effect in supply chains. IEEE International Conference on Fuzzy Systems, Vancouver, BC, July 16–21, 2006, pp. 663–670.

  123. Hassan U, Soh B (2005) Using adaptive web service multi agents for collaborative forecasting and countering bullwhip effect in SCM. 2005 International Conference on Integration of Knowledge Intensive Multi-Agent Systems, KIMAS'05: Modeling, Exploration, and Engineering, Waltham, MA, USA, April 18–21, 2005, pp. 567–572

  124. Disney SM, Lambrecht M, Towill DR, Van de Velde W (2007) The value of coordination in a two-echelon supply chain. IIE Trans 40(3):341–355

    Article  Google Scholar 

  125. Guo H-F (2007) H∞ control of a state matrix model of multiechelon supply chains system and its bullwhip effect. Proceedings of 2007 International Conference on Management Science and Engineering, (14th), Harbin, 20–22 Aug. 2007, pp. 850–854

  126. Guo H, Huang X (2006) H∞ control of a state matrix model of closed-loop supply chain and its bullwhip effect. 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006, pp. 1–5.

  127. Ouyang Y, Daganzo C (2006) Counteracting the bullwhip effect with decentralized negotiations and advance demand information. Phys A Stat Mech Appl 363(1):14–23

    Article  Google Scholar 

  128. Wright D, Yuan X (2008) Mitigating the bullwhip effect by ordering policies and forecasting methods. Int J Prod Econ 113(2):587–597

    Article  Google Scholar 

  129. Boute RN, Disney SM, Lambrecht MR, Van Houdt B (2007) An integrated production and inventory model to dampen upstream demand variability in the supply chain. Eur J Oper Res 178(1):121–142

    Article  MATH  Google Scholar 

  130. Gaalman G (2006) Bullwhip reduction for ARMA demand: the proportional order-up-to policy versus the full-state-feedback policy. Automatica 42(8):1283–1290

    Article  MathSciNet  MATH  Google Scholar 

  131. Lin C, Lin Y-T (2006) Mitigating the bullwhip effect by reducing demand variance in the supply chain. Int J Adv Manuf Technol 28(3–4):328–336

    Article  Google Scholar 

  132. Sheu J-B (2005) A multi-layer demand-responsive logistics control methodology for alleviating the bullwhip effect of supply chains. Eur J Oper Res 161(3):797–811

    Article  MATH  Google Scholar 

  133. Lin P-H, Wong DS-H, Jang S-S, Shieh S-S, Chu J-Z (2004) Controller design and reduction of bullwhip for a model supply chain system using z-transform analysis. J Process Control 14(5):487–499

    Article  Google Scholar 

  134. Simchi-Levi D, Kaminsky P, Simchi-Levi E, Shankar R (2008) Designing and managing the supply chain: concepts, strategies, and case studies, 3rd edn. Tata McGraw Hill Publishing Company Limited, New Delhi

    Google Scholar 

  135. Linh CT, Hong Y (2009) Channel coordination through a revenue sharing contract in a two-period newsboy problem. Eur J Oper Res 198(3):822–829

    Article  MATH  Google Scholar 

  136. Hou J, Zeng AZ, Zhao L (2009) Achieving better coordination through revenue sharing and bargaining in a two-stage supply chain. Comput Ind Eng 57(1):383–394

    Article  Google Scholar 

  137. Zhao D, Wang F, Qi Y (2009) Channel coordination of a dominant-retailer supply chain model with option contract. Proceedings of the 1st International Workshop on Education Technology and Computer Science, Vol 02, Wuhan, Hubei, 7–8 March 2009, pp. 471–475.

  138. Li S, Zhu Z, Huang L (2009) Supply chain coordination and decision making under consignment contract with revenue sharing. Int J Prod Econ 120(1):88–99

    Article  Google Scholar 

  139. Wong WK, Qi J, Leung SYS (2009) Coordinating supply chains with sales rebate contracts and vendor-managed inventory. Int J Prod Econ 120(1):151–161

    Article  Google Scholar 

  140. Leng M, Parlar M (2009) Lead-time reduction in a two-level supply chain: non-cooperative equilibria vs. coordination with a profit-sharing contract. Int J Prod Econ 118(2):521–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, R., Bandyopadhyay, S. A review of the causes of bullwhip effect in a supply chain. Int J Adv Manuf Technol 54, 1245–1261 (2011). https://doi.org/10.1007/s00170-010-2987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2987-6

Keywords

Navigation