Skip to main content
Log in

Determination of flow stress of thin-walled tube based on digital speckle correlation method for hydroforming applications

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The flow stress, used to describe the plastic deformation behavior of thin-walled tube, is one of the most important parameters to ensure reliable finite element simulation in the tube hydroforming process. In this study, a novel approach of on-line measurement based on digital speckle correlation method is put forward to determine flow stress of thin-walled tube. A simple experimental tooling is developed and free-bulged tests are performed for 304 stainless steel and H62 brass alloy tubes. An analytical approach is proposed according to the membrane theory and the force equilibrium equation. The developed method is validated by means of FE simulations. The results indicate that the present method is acceptable to define the flow stress in the tube hydroforming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aueulan Y, Ngaile G, Altan T (2004) Optimizing tube hydroforming using process simulation and experimental verification. J Mater Process Technol 146:137–143. doi:10.1016/S0924-0136(03)00854-9

    Article  Google Scholar 

  2. Mohammadi F, Mashadi MM (2009) Determination of the loading path for tube hydroforming process of a copper joint using a fuzzy controller. Int J Adv Manuf Technol 43:1–10. doi:10.1007/s00170-008-1697-9

    Article  Google Scholar 

  3. Elie-dit-cosaque X, Chebbah MS, Naceur H, Gakwaya A (2012) Analysis and design of hydroformed thin-walled tubes using enhanced one-step method. Int J Adv Manuf Technol 59:507–520. doi:10.1007/s00170-011-3539-4

    Article  Google Scholar 

  4. Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339. doi:10.1016/j.matdes.2011.07.052

    Article  Google Scholar 

  5. Strano M, Jirathearanat S, Shr SG, Altan T (2004) Virtual process development in tube hydroforming. J Mater Process Technol 146:130–136. doi:10.1016/S0924-0136(03)00853-7

    Article  Google Scholar 

  6. Chen XF, Li SH, Yu ZQ, Lin ZQ (2012) Study on experimental approaches of forming limit curve for tube hydroforming. Int J Adv Manuf Technol 61:87–100. doi:10.1007/s00170-011-3707-6

    Article  Google Scholar 

  7. Koç M, Aueulan Y, Altan T (2001) On the characteristics of tubular materials forhydroforming—experimentation and analysis. Int J Mach Tools Manuf 41:761–772

    Article  Google Scholar 

  8. Bortot P, Ceretti E, Giardini C (2008) The determination of flow stress of tubular material for hydroforming applications. J Mater Process Technol 203:381–388. doi:10.1016/j.jmatprotec.2007.10.047

    Article  Google Scholar 

  9. Tian ZK, Ma ZE (2002) Estimation of the hardening characteristics of tubular material. Mechanical science and technology 3:272–273 (in Chinese)

    Google Scholar 

  10. Hwang YM, Lin YK (2002) Analysis and finite element simulation of the tube bulge hydroforming process. J Mater Process Technol 125:821–825

    Article  Google Scholar 

  11. Lin YL, He ZB, Yuan SJ (2010) The factors affecting the profile of middle bulge region during tube bulge test. Acta Metallurgica Sinica 6:729–735 (in Chinese)

    Article  Google Scholar 

  12. Strano M, Altan T (2004) An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications. J Mater Process Technol 146:92–96. doi:10.1016/j.jmatprotec.2003.07.016

    Article  Google Scholar 

  13. Yang LF, Guo C (2008) Determination of stress–strain relationship of tubular material with hydraulic bulge test. Thin-Walled Struct 46:147–154. doi:10.1016/j.tws.2007.08.017

    Article  MathSciNet  Google Scholar 

  14. Song WJ, Kim J, Kang BS (2007) Experimental and analytical evaluation on flow stress of tubular material for tube hydroforming simulation. J Mater Process Technol 191:368–371. doi:10.1016/j.jmatprotec.2007.03.034

    Article  Google Scholar 

  15. Meng LB, Jin GC, Yao XF, Yeh HY (2006) 3D full-field deformation monitoring of fiber composite pressure vessel using 3D digital speckle correlation method. Polym Test 25:42–48

    Article  Google Scholar 

  16. Tang ZZ, Liang J, Xiao ZZ, Guo C, Hu H (2010) Three-dimensional digital image correlation system for deformation measurement in experimental mechanics. Opt Eng 10:1–9

    Google Scholar 

  17. Koç M, Billur E, Cora ÖN (2011) An experimental study on the comparative assessment of hydraulic bulge test analysis methods. Mater Des 32:272–281. doi:10.1016/j.matdes.2010.05.057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Liu, X., Yang, L. et al. Determination of flow stress of thin-walled tube based on digital speckle correlation method for hydroforming applications. Int J Adv Manuf Technol 69, 439–450 (2013). https://doi.org/10.1007/s00170-013-5039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5039-1

Keywords

Navigation