Skip to main content
Log in

Different approaches for the loop layout problems: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the manufacturing process, loop layout problems (LLPs) are preferred to configurations like single row layout, double row layout, cluster layout, and circular layout for their relative lower initial investment costs because they contain a minimal number of required material links to connect all workstations while providing a high degree of material handling flexibility. The performance of a system is based on the impact of the loop layout. Most of these LLPs are non-polynomial hard. Numerous research works related to loop layout have been published. The literature analysis given here is not restricted to specific considerations about loop layout design. This paper aims to deal with the current and future trends of research on LLPs based on previous research including formulations, solution methodologies. A trend toward bidirectional assumption, large-sized test problems, mixed integer programming, shortcuts instead of additional loop, loading and waiting time for shortcuts, integration of the supply chain management with the data envelopment analysis and also integrate exact, decomposition algorithm with metaheuristics, and developing loop layout using metaheuristics such as scatter search algorithm, improved tabu search, and artificial bees colony algorithm to loop layout is observed. Several research directions are pointed out and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afentakis P (1989) A loop layout design problem for flexible manufacturing systems. Int J Flex Manuf Syst 1(2):143–175

    Article  Google Scholar 

  2. AsefVaziri A, Dessouky M, Sriskandarajah C (2001) A loop material flow system design for automated guided vehicles. Int J Flex Manuf Syst 13(1):33–48

    Article  Google Scholar 

  3. AsefVaziri A, Laporte G, Ortiz R (2007) Exact and heuristic procedures for the material handling circular flow path design problem. Eur J Oper Res 176:707–726

    Article  MathSciNet  Google Scholar 

  4. AsefVaziri A, Laporte G (2005) Loop based facility planning and material handling. Eur J Oper Res 164(1):1–11

    Article  MathSciNet  Google Scholar 

  5. Altinel IK, Oncan T (2005) Design of unidirectional cyclic layouts. Int J Prod Res 43(19):3983–4008

    Article  MATH  Google Scholar 

  6. AsefVaziri A, Laporte G, Sriskandarajah C (2000) The block layout shortest loop design problem. IIE Trans 32(8):727–734

    Google Scholar 

  7. Banerjee P, Zhou Y (1995) Facilities layout design optimization with single loop material flow path configuration. Int J Prod Res 33(1):183–203

    Article  MATH  Google Scholar 

  8. Bennell JA, Potts CN, Whitehead JD (2002) Local search algorithms for the min_max loop layout problem. J Oper Res Soc 53(10):1109–1117

    Article  MATH  Google Scholar 

  9. Bartholdi JJ, Platzman LK (1989) Decentralized control of automatic guided vehicles on a simple loop. IIE Trans 21(1):76–81

    Article  Google Scholar 

  10. Bozer YA, Srinivasan MM (1992) Tandem AGV systems; a partitioning algorithm and performance comparison with conventional AGV systems. Eur J Oper Res 63(2):173–192

    Article  Google Scholar 

  11. Bozer YA, Srinivasan MM (1989) Tandem configurations for automated guided vehicle systems and the analysis of single vehicle loop. IIE Trans 23(1):72–82

    Article  Google Scholar 

  12. Bozer YA, Rim SC (1989) Exact solution procedures for the circular layout problem. Technical Report 8933. University of Michigan

  13. Bozer YA, Hsieh YJ (2004) Expected waiting times at loading stations in discrete space closed loop conveyors. Eur J Oper Res 155:516–532

    Article  MathSciNet  MATH  Google Scholar 

  14. Bozer YA, Hsieh YJ (2005) Throughput performance analysis and machine layout for discrete-space closed-loop conveyors. IIE Trans 37(1):77–89

    Article  Google Scholar 

  15. Caricato P, Ghiani G, Grieco A, Musmanno R (2007) Improved formulation, branch and cut and tabu search for single loop material flow system design. Eur J Oper Res 178(1):85–91

    Article  MathSciNet  MATH  Google Scholar 

  16. Caricato P, Grieco A (2005) Using simulated annealing to design a material handling system. J IEEE Intell Syst 20(4):26–30

    Article  Google Scholar 

  17. Chae J, Peters BA (2006) A simulated annealing algorithm based on a closed loop layout for facility layout design in flexible manufacturing systems. Int J Prod Res 44(13):2561–2572

    Article  MATH  Google Scholar 

  18. Chang SH, Egbelu PJ (1996) Dynamic positioning of AGVs in a loop layout to minimize mean system response time. Int J Prod Res 34(6):1655–1674

    Article  MATH  Google Scholar 

  19. Cheng R, Gent M, Tosawa T (1996) Genetic algorithms for designing loop layout manufacturing systems. Comput Ind Eng 31(34):587–591

    Article  Google Scholar 

  20. Cheng R, Gen M (1998) Loop layout design problem in flexible manufacturing systems using genetic algorithms. Comput Sci Ind Eng 34(1):53–61

    Article  Google Scholar 

  21. Egbelu PJ (1993) Positioning of automated guided vehicles in loop layout to improve response time. Eur J Oper Res 71(1):32–44

    Article  MATH  Google Scholar 

  22. ElMaraghy HA, Manns M (2009) Synchronisation of inter arrival times in manufacturing systems with main and side loops. Int J Prod Res 47(7):1931–1954

    Article  MATH  Google Scholar 

  23. Farahani RZ, Laporte G, Sharifyazdi M (2005) A practical exact algorithm for the shortest loop design problem in a block layout. Int J Prod Res 43(9):1879–1887

    Article  MATH  Google Scholar 

  24. Farahani RZ, Pourakbar M, Miandoabchi E (2007) Developing exact and tabu search algorithms for simultaneously determining AGV loop and P/D stations in single loop systems. Int J Prod Res 45(2):5199–5222

    Article  MATH  Google Scholar 

  25. Francis RL, McGinnis LF Jr, White JA (1992) Facility layout and location, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  26. Gademann AJRM, Van de Velde SL (2000) Positioning automated guided vehicles in a loop layout. Eur J Oper Res 127(3):565–573

    Article  MATH  Google Scholar 

  27. Ghomi TF, Jaafari AA (2011) Simulation optimization approach for facility layout problem—a queuing theory based approach. J Am Sci 7(1):937–941

    Google Scholar 

  28. Glover F (1989) Tabu search: part I. ORSA J Comput 1:190–206

    Article  MathSciNet  MATH  Google Scholar 

  29. Glover F (1990) Tabu search: part II. ORSA J Comput 2:4–32

    Article  MATH  Google Scholar 

  30. Glover E, Laguna M (1997) Tabu search. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  31. Glover F (1998) A template for scatter search and path relinking. In: Hao JK, Lutton E, Ronald E, Schoenaue M, Snyers D (eds) Lecture notes in computer science. Vol.1363, Springer, Berlin. pp. 13–54

  32. Ho YC (2000) A dynamic zone strategy for vehicle collision prevention and load balancing in an AGV system with a single loop guide path. Comput Ind 42(23):159–176

    Article  Google Scholar 

  33. Hojabri H, Hojabri A, Jaafari AA, Farahani LN (2010) A loop material flow system design. Int Multiconference Eng Comput Sci 3(58):978–988

    Google Scholar 

  34. Hong S, Johnson AL, Carlo HJ, Nazzal D, Jimenez JA (2010) Optimizing the location of crossovers in conveyor-based automated material handling systems in semiconductor wafer fabs. Int J Prod Res pp. 1–28, doi:10.1080/00207543.2010.528059

  35. Johnson AL, Carlo HJ, Jimenez JA, Nazzal D, Lasrado V (2009) A greedy heuristic for locating crossovers in conveyor-based AMHS in wafer fabs. Proceedings of the 2009 Winter Simulation Conference, Rossetti MD, Hill RR, Johansson B, Dunkin A, Ingalls RG (eds), pp. 1667–1676.

  36. Kaku BK, Rachamadugu R (1992) Layout design for flexible manufacturing systems. Eur J Oper Res 57(2):224–230

    Article  MATH  Google Scholar 

  37. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report for Computer Engineering Department, Erciyes University, Kayseri, Turkey

  38. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  39. Khan MK, Hussain I, Noor S (2011) A knowledge based methodology for planning and designing of a flexible manufacturing system (FMS). Int J Appl Manag Sci 13(1):91–106

    Google Scholar 

  40. Kim JG, Kim YD (2000) Layout planning for facilities with fixed shapes and input and out points. Int J Prod Res 38(2):4635–4653

    Article  MATH  Google Scholar 

  41. Kiran AS, Unal AT, Karabati S (1992) A location problem on unicyclic networks: balanced case. Eur J Oper Res 62(2):194–202

    Article  MATH  Google Scholar 

  42. Kiran AS, Karabati S (1993) Exact and approximate algorithms for the loop layout problem. Prod Plan Control 4(3):253–259

    Article  Google Scholar 

  43. Kouvelis P, Kim MW (1992) Unidirectional loop network layout problem in automated manufacturing systems. Eur J Oper Res 40(3):533–550

    Article  Google Scholar 

  44. Kumar RMS, Asokan P, Kumanan S (2008) Design of loop layout in flexible manufacturing system using nontraditional optimization technique. Int J Adv Manuf Technol 38(56):594–599

    Article  Google Scholar 

  45. Kumar RMS, Asokan P, Kumanan S (2008) Scatter search algorithm for single row layout problems in FMS. Adv Prod Eng Manag 3(4):193–204

    Google Scholar 

  46. Kumar RMS, Asokan P, Kumanan S (2009) Artificial immune system based algorithm for the unidirectional loop layout problem in a flexible manufacturing system. Int J Adv Manuf Technol 40(56):553–565

    Article  Google Scholar 

  47. Kumar RMS, Asokan P, Kumanan S (2010) An artificial immune system based algorithm to solve linear and loop layout problems in flexible manufacturing systems. Int J Prod Dev 10(1/2/3):165–179

    Article  Google Scholar 

  48. Lazaro AR (2009) Dynamic analysis of an automobile assembly line considering starving and blocking. J Robot Comput Integr Manuf 25(2):271–279

    Article  Google Scholar 

  49. Lasrado V, Nazzal D (2009) Design of a manufacturing facility layout with a closed loop conveyor with shortcuts using queueing theory and GA. Proceedings of the Winter Simulation Conference. Jain S, Creasey RR, Himmelspach J, White KP, Fu M (eds)

  50. Lee SD, Huang KH, Chiang CP (2001) Configuring layout in unidirectional loop manufacturing systems. Int J Prod Res 39(6):1183–1201

    Article  MATH  Google Scholar 

  51. Leung J (1992) A graph theoretic heuristic for designing loop layout manufacturing systems. Eur J Oper Res 57(2):243–252

    Article  MATH  Google Scholar 

  52. Leung J (1994) Polyhedral structure and properties of a model for layout design. Eur J Oper Res 77(2):195–207

    Article  MATH  Google Scholar 

  53. Malakooti B (2004) Unidirectional loop network layout by a LP heuristic and design of telecommunications networks. J Intel Manu 15(2):117–125

    Article  MathSciNet  Google Scholar 

  54. Mazinani M, Abedzadeh M, Mohebali N (2012) Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4229-6

    Google Scholar 

  55. Miandoabchi E, Farahani RZ (2009) Solving the tandem AGV network design problem using tabu search: cases of maximum workload and workload balance with fixed and non fixed number of loops. J Ind Eng Int 5(8):37–51

    Google Scholar 

  56. Moghaddam RT, Panahi H (2007) Solving a new mathematical model of a closed-loop layout problem with unequal- sized facilities by a genetic algorithm. Proceedings of the 2007 I.E. IEEM, pp. 327–331.

  57. Nazzal D, Jimenez JA, Carlo HJ, Johnson AL, Lasrado V (2010) An analytical model for conveyor-based material handling system with crossovers in semiconductor wafer fabs. IEEE Trans Semicond Manuf 23(3):468–476

    Article  Google Scholar 

  58. Nearchou AC (2006) Metaheuristics from nature for the loop layout design problem. Int J Prod Econ 101(2):312–328

    Article  Google Scholar 

  59. Ozcelik F, Islier AA (2006) Unidirectional loop layout problem with balanced flow. Advances in Applied Artificial Intelligence 4031(3):741–749

    Article  Google Scholar 

  60. Ozcelik A, Islier AA (2011) Generalisation of unidirectional loop layout problem and solution by a genetic algorithm. Int J Prod Res 49(3):747–764

    Article  Google Scholar 

  61. Pandian PP (2007) Optimization of loop layout design problem in FMS using particle swarm optimization technique. Proceedings of the International Conference on Modeling and Simulation (CITICOM – 2007), pp. 27–29.

  62. Panahi H, Rabbani M, Moghaddam RT (2008) A comparison of three meta-heuristics for a closed-loop layout problem with unequal-sized facilities. New Challenges Appl Intell Technol Stud Comput Intell 134:265–278

    Article  Google Scholar 

  63. Potts C, Whitehead JD (2001) Workload balancing and loop layout in the design of a flexible manufacturing system. Eur J Oper Res 129(2):326–336

    Article  MATH  Google Scholar 

  64. Seo Y, Lee C, Moon C (2007) Tabu search algorithm for flexible flow path design of unidirectional automated guided vehicle systems. OR spectrum 29(2):471–487

    Article  MATH  Google Scholar 

  65. Sedehi MS, Farahani RZ (2009) An integrated approach to determine the block layout, AGV flow path and the location of pickup/delivery points in single loop systems. Int J Prod Res 47(11):3041–3061

    Article  MATH  Google Scholar 

  66. Sharp GP, Liu FHF (1990) An analytical method for configuring fixed path closed loop material handling systems. Int J Prod Res 28(4):757–783

    Article  Google Scholar 

  67. Sinriech D, Tanchoco JMA (1992) The centroid projection method for locating pickup and delivery stations in a single loop AGV system. J Manuf Syst 11(4):297–307

    Article  Google Scholar 

  68. Sinriech D, Tanchoco JMA (1993) Solution methods for the mathematical models of single loop AGV systems. Int J Prod Res 31(3):705–725

    Article  Google Scholar 

  69. Sinriech D, Tanchoco JMA (1992) Impact of empty vehicle flow on performance of single loop AGV systems. Int J Prod Res 30(10):2237–2252

    Article  Google Scholar 

  70. Sinriech D, Tanchoco JMA (1992) OSL optimal single loop guide paths for AGVS. Int J Prod Res 30(3):665–681

    Article  Google Scholar 

  71. Taha Z, Zuhdi A (2010) Loop layout design problem solution in flexible manufacturing system using virtual factory approach. The 11th Asia Pacific Industrial Engineering and Management Systems Conference

  72. Tanchoco JMA, Guzman DE, Prabhu N (1997) Complexity of the AGV shortest path and single loop guide path layout problems. Int J Prod Res 35(8):2083–2092

    Article  MATH  Google Scholar 

  73. Tansel BC, Bilen C (1998) Move based heuristics for the unidirectional loop network layout problem. Eur J Oper Res 108(1):36–48

    Article  MATH  Google Scholar 

  74. Ting JH, Tanchoco JM (2000) Unidirectional circular layout for overhead material handling systems. Int J Prod Res 38:3913–3936

    Article  MATH  Google Scholar 

  75. Ting JH, Tanchoco JM (2001) Optimal bi-directional spine layout for overhead material handling systems. IEEE Trans Semicond Manuf 14:57–64

    Article  Google Scholar 

  76. Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2003) Facilities planning, 3rd edn. Wiley, New York

    Google Scholar 

  77. AsefVaziri AA, Kazemi M, Eshghi K, Lahmar M (2010) An ant colony system for enhanced loop-based aisle-network design. Eur J Oper Res 207(1):110–120

    Article  MathSciNet  Google Scholar 

  78. Ventura JA, Lee C (2001) Tandem loop with multiple vehicles configuration for automated guided vehicle systems. J Manuf Syst 20(3):153–165

    Article  Google Scholar 

  79. Ventura JA, Lee C (2003) Optimally locating multiple dwell points in a single loop guide path system. IIE Trans 35(8):727–737

    Article  Google Scholar 

  80. Ventura JA, Rieksts BQ (2009) Optimal location of dwell points in a single loop AGV with time restrictions on vehicle availability. Eur J Oper Res 192(1):93–104

    Article  MathSciNet  MATH  Google Scholar 

  81. Yu W, Egbelu PJ (2001) Design of variable path tandem layout for automated guided vehicle systems. J Manuf Syst 20(5):305–319

    Article  Google Scholar 

  82. Yang T, Peters BA (1997) A spine layout design method for semiconductor fabrication facilities containing automated material handling systems. IntJ Oper Prod Manag 17(5):490–501

    Article  Google Scholar 

  83. Yang T, Peters BA (1997) Integrated facility layout and material handling system design in semiconductor fabrication facilities. IEEE Transf Semicond Manuf 10(3):360–369

    Article  Google Scholar 

  84. Yang T, Peters BA, Tu M (2005) Layout design for flexible manufacturing systems considering single loop directional flow patterns. Eur J Oper Res 164(2):440–455

    Article  MATH  Google Scholar 

  85. Zheng XJ, Teng HF (2010) Relative position coded differential evolution for loop based station sequencing problem. J Prod Res 48(18):5327–5344

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, M., Ganesh Kumar, S. Different approaches for the loop layout problems: a review. Int J Adv Manuf Technol 69, 2513–2529 (2013). https://doi.org/10.1007/s00170-013-5133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5133-4

Keywords

Navigation