Skip to main content

Advertisement

Log in

Investigation of the effect of diffusion bonding parameters on microstructure and mechanical properties of 7075 aluminium alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, diffusion bonding of aluminium alloy (AA7075) sheet materials which are used especially in the automobile and aerospace industry has been investigated at temperatures of 425 and 450 °C and pressures of 2 and 3 MPa for 180 min in argon atmosphere. The microstructural and mechanical properties of bonding have been characterized with different welding parameters such as bonding temperature and pressure. The microstructure was characterized by light optical microscope, scanning electron microscope and energy dispersive spectroscopy, while the mechanical properties were determined by tensile-shear tests and microhardness tests. The results obtained are discussed from both the microstructural and mechanical points of view. It was observed in the microstructural investigations that the interfacial oxide layer decreased with increasing of the bonding temperature and pressure. The maximum shear strength was found to be 131 MPa for the Al 7075 sample bonded at 450 °C and 3 MPa for 180 min. It is shown that in certain extent, the bonding temperature and bonding pressure have great effect on the joint shear strength. With the increasing of bonding temperature and pressure, the shear strength of the joints increases due to diffusion of atoms in the interface. The strength achieved after bonding were dependent on interface grain boundary migration and on grain growth during the bonding process. The maximum hardness value of the Al 7075 sample bonded at 450 °C, 3 MPa for 180 min is 92.5 HV0.2. Increasing hardness with increasing temperature can be attributed to the formation of metallic bond at high temperatures and pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin F, Li T, Yu Q, Sun L, Meng Q (2011) Diffusion bonding between AZ91 magnesium alloy and 7075 aluminum alloy. Adv Mater Research 308–310:800–803

    Article  Google Scholar 

  2. Torun O, Celikyurek I (2009) Boriding of diffusion bonded joints of pure nickel to commercially pure titanium. Mater Des 30:1830–1834

    Article  Google Scholar 

  3. Dehghani K, Nekahi A, Mirzaie MAM (2010) Optimizing the bake hardening behavior of Al7075 using response surface methodology. Mater Des 31:1768–1775

    Article  Google Scholar 

  4. Woei-Shyan L, Wu-Chung S, Chi-Feng L, Chin-Jyi W (2000) The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J Mater Process Technol 100:116–122

    Article  Google Scholar 

  5. Tajally M, Huda Z, Masjuki HH (2010) A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy. Inter J Impact Eng 37:425–432

    Article  Google Scholar 

  6. Sang-Yong L, Jung-Hwan L, Young-Seon L (2001) Characterization of Al 7075 alloys after cold working and heating in the semi-solid temperature range. J Mater Process Technol 111:42

    Article  Google Scholar 

  7. Alhazaa A, Khan TI (2010) Diffusion bonding of Al7075 to Ti–6Al–4 V using Cu coatings and Sn–3.6Ag–1Cu interlayers. J Alloys and Compd 494:351–358

    Article  Google Scholar 

  8. Alhazaa A, Khan TI, Haq I (2010) Transient liquid phase (TLP) bonding of Al7075 to Ti–6Al–4 V alloy. Mater Charact 61:312–317

    Article  Google Scholar 

  9. Uematsu Y, Tokaji K (2009) Comparison of fatigue behaviour between resistance spot and friction stir spot welded aluminium alloy sheets. Sci Technol Weld Join 14:62–71

    Article  Google Scholar 

  10. John Prakash S, Muthukumaran S (2011) Refilling probe hole of friction spot joints by friction forming. Mater Manuf Process 26:1539–1545

    Article  Google Scholar 

  11. Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al–Mg–Si alloy. Int J Fract 30:1956–1966

    Google Scholar 

  12. Shen Z, Yang X, Zhang Z, Cui L, Li T (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486

    Article  Google Scholar 

  13. Özdemir N, Aksoy M, Orhan N (2003) Effect of graphite shape in vacuum-free diffusion bonding of nodular cast iron with gray cast iron. J Mater Process Technol 141:228–233

    Article  Google Scholar 

  14. Ravisankar B, Krishnamoorthi J, Ramakrishnan SS, Angelo PC (2009) Diffusion bonding of SU 263. J Mater Process Technol 209:2135–2144

    Article  Google Scholar 

  15. Aydin M, Gurler R, Turker M (2009) The diffusion welding of 7075Al–3%SiC particles reinforced composites. Phys Met Metallogr 107:206–210

    Article  Google Scholar 

  16. Kenevisi MS, Mousavi Khoie SM (2012) An investigation on microstructure and mechanical properties of Al7075 to Ti–6Al–4 V Transient Liquid Phase (TLP) bonded joint. Mater Des 38:19–25

    Article  Google Scholar 

  17. Kundu S, Chatterjee S (2006) Interfacial microstructure and mechanical properties of diffusion-bonded titanium–stainless steel joints using a nickel interlayer. Mater Sci Eng A 425:107–113

    Article  Google Scholar 

  18. Ghosh M, Bhanumurthy K, Kale GB, Krishnan J, Chatterjee S (2003) Diffusion bonding of titanium to 304 stainless steel. J Nucl Mater 322:235–241

    Article  Google Scholar 

  19. Arik H, Aydin M, Kurt A, Turker M (2005) Weldability of Al4C3–Al composites via diffusion welding technique. Mater Des 26:555–560

    Article  Google Scholar 

  20. Mahendran G, Balasubramanıan V, Senthılvelan T (2010) Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints. T Nonferr Metal Soc 20:997–1005

    Article  Google Scholar 

  21. Chen SD, Soh AK, Ke FJ (2005) Molecular dynamics modeling of diffusion bonding. Scripta Mater 52:1135–1140

    Article  Google Scholar 

  22. Mahendran G, Babu S, Balasubramanian V (2010) Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg–Al dissimilar joints. J Mater Eng Perform 19:657–665

    Article  Google Scholar 

  23. Kurt B, Orhan N, Evin E, Calik A (2007) Diffusiyon bonding between Ti-6Al-4 V alloy and ferritic stainless steel. Mater Lett 61:1747–1750

    Article  Google Scholar 

  24. Wei Y, Aiping W, Guisheng Z, Jialie R (2008) Formation process of the bonding joint in Ti/Al diffusion bonding. Mater Sci Eng A 480:456–463

    Article  Google Scholar 

  25. Kenevisi MS, Mousavi Khoie SM (2012) A study on the effect of bonding time on the properties of Al7075 to Ti–6Al–4 V diffusion bonded joint. Mater Lett 76:144–146

    Article  Google Scholar 

  26. Aydın K, Kaya Y, Kahraman N (2012) Experimental study of diffusion welding/bonding of titanium to copper. Mater Des 37:356–368

    Article  Google Scholar 

  27. Ghosh M, Chatterjee S (2003) Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater Sci Eng A 358:152–158

    Article  Google Scholar 

  28. Atasoy E, Kahraman N (2008) Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 59:1481–1490

    Article  Google Scholar 

  29. Somekawa H, Watanabe H, Mukai T, Higashi K (2003) Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Mater 48:1249–1254

    Article  Google Scholar 

  30. Huang Y, Ridley N, Humphreys FJ, Cui JZ (1999) Diffusion bonding of superplastic 7075 aluminum alloy. Mater Sci Eng A 266:295–302

    Article  Google Scholar 

  31. Prescott R, Graham MJ (1992) Formation of aluminum oxide scales on high-temperature alloys. Oxid Met 38:233–254

    Article  Google Scholar 

  32. Shirzadi AA, Saindrenan G, Wallach ER (2002) Flux-free diffusion brazing of aluminium-based materials using gallium. Mater Sci Forum 396–402:1579–1584

    Article  Google Scholar 

  33. Cheng L, Northwood DO, Bhole SD (2004) Tensile fracture behavior in CO2 laser beam welds of 7075-T6 aluminum alloy. Mater Des 25:573–577

    Article  Google Scholar 

  34. Vander Voort GF (2004) Metallography and microstructures, ASM handbook. ASM International, Materials Park

    Google Scholar 

  35. ASTM standard D1002 (1999) Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). ASTM International.

  36. Huang Y, Hummpberys FJ, Ridley N, Wang ZC (1998) Diffusion bonding of hot rolled 7075 Al alloys. Mater Sci Technol 14:405–410

    Article  Google Scholar 

  37. Kolukısa S (2007) The effect of the welding temperature on the weldability in diffusion welding of martensitic (AISI 420) stainless steel with ductile (spheroidal graphite-nodular) cast iron. J Mater Process Technol 86:33–36

    Article  Google Scholar 

  38. Yıldırım S, Kelestemur MH (2005) A study on the solid-state welding of boron-doped Ni3Al–AISI 304 stainless steel couple. Mater Lett 59:1134–1137

    Article  Google Scholar 

  39. Liming L, Meili Z, Longxiu P, Lin W (2001) Studying of micro-bonding in diffusion welding joint for composite. Mater Sci Eng A 315:103–107

    Article  Google Scholar 

  40. Torun O, Karabulut A, Baksan B, Celikyurek İ (2008) Diffusion bonding of AZ91 using a silver interlayer. Mater Des 29:2043–2046

    Article  Google Scholar 

  41. Schwantes S, Broden G, Haubmann G (1992) Aluminium–lithium. In: Peters M, Winkler PJ. (ed) DGM Publishing, Oberursel, pp 1099.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naci Kurgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurgan, N. Investigation of the effect of diffusion bonding parameters on microstructure and mechanical properties of 7075 aluminium alloy. Int J Adv Manuf Technol 71, 2115–2124 (2014). https://doi.org/10.1007/s00170-014-5650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5650-9

Keywords

Navigation