Skip to main content
Log in

Real-time control of microstructure in laser additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A novel closed-loop process is demonstrated to control deposition microstructure during laser additive manufacturing (LAM) in real-time. An infrared imaging system is developed to monitor surface temperatures during the process as feedback signals. Cooling rates and melt pool temperatures are recorded in real-time to provide adequate information regarding thermal gradients, and thus control the deposition microstructure affected by cooling rates during LAM. Using correlations between the cooling rate, traveling speed, and the clad microstructure, a novel feedback PID controller is established to control the cooling rate. The controller is designed to maintain the cooling rate around a desired point by tuning the traveling speed. The performance of the controller is examined on several single-track and multi-track closed-loop claddings in order to achieve desired microstructures with specific properties. Results indicate that the closed-loop controller is capable of generating a consistent controlled microstructure during the LAM process in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41:849–867. doi:10.1016/S0143-8166(03)00063-0

    Article  Google Scholar 

  2. Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52:69–80. doi:10.1016/j.actamat.2003.08.028

    Article  Google Scholar 

  3. He X, Mazumder J (2007) Transport phenomena during direct metal deposition. J Appl Phys 101:053113. doi:10.1063/1.2710780

    Article  Google Scholar 

  4. He X, Yu G, Mazumder J (2010) Temperature and composition profile during double-track laser cladding of H13 tool steel. J Phys D Appl Phys 43:015502. doi:10.1088/0022-3727/43/1/015502

    Article  Google Scholar 

  5. Kobryn P, Semiatin S (2003) Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J Mater Process Technol 135:330–339. doi:10.1016/S0924-0136(02)00865-8

    Article  Google Scholar 

  6. Doubenskaia M, Bertrand P, Smurov I (2006) Pyrometry in laser surface treatment. Surf Coat Technol 201:1955–1961. doi:10.1016/j.surfcoat.2006.04.060

    Article  Google Scholar 

  7. Doumanidis C, Kwak Y-M (2001) Geometry modeling and control by infrared and laser sensing in thermal manufacturing with material deposition. J Manuf Sci Eng 123:45. doi:10.1115/1.1344898

    Article  Google Scholar 

  8. Kathuria YP, Tsuboi A (1996) The effect of beam interaction time on laser cladding process. Lasers and Electro-Optics. Optical Society of America Technical Digest Anaheim 351–352

  9. Smurov I (2001) Pyrometry applications in laser machining. Proceeding SPIE Laser-Assisted Microtechnology 2000 St. Petersburg-Pushkin, Russia 4157: 55–66

  10. Smurov I, Ignatiev M (1996) Real time pyrometry in laser surface treatment. Laser Process Surf Treat Film Depos 307:529–564

    Article  Google Scholar 

  11. Steen WM, Mazumder J (2010) Laser material processing, 4th edn. Springer, London

    Book  Google Scholar 

  12. Griffith M, Schlienger M, Harwell L et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113. doi:10.1016/S0261-3069(99)00016-3

    Article  Google Scholar 

  13. Doubenskaia M, Bertrand P, Smurov IY (2004) Temperature monitoring of Nd:YAG laser cladding (CW and PP) by advanced pyrometry and CCD-camera based diagnostic tool. Laser-Assisted Micro- and Nanotechnol 5399:212–219. doi:10.1117/12.552850

    Google Scholar 

  14. Pavlov M, Novichenko D, Doubenskaia M (2011) Optical diagnostics of deposition of metal matrix composites by laser cladding. Phys Procedia 12:674–682. doi:10.1016/j.phpro.2011.03.084

    Article  Google Scholar 

  15. Hua T, Jing C, Xin L et al (2008) Research on molten pool temperature in the process of laser rapid forming. J Mater Process Technol 198:454–462. doi:10.1016/j.jmatprotec.2007.06.090

    Article  Google Scholar 

  16. Zhang Y, Yu G, He X et al (2012) Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J Mater Process Technol 212:106–112. doi:10.1016/j.jmatprotec.2011.08.011

    Article  Google Scholar 

  17. Song L, Mazumder J (2011) Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol 19:1349–1356. doi:10.1109/TCST.2010.2093901

    Article  Google Scholar 

  18. Salehi D, Brandt M (2005) Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. Int J Adv Manuf Technol 29:273–278. doi:10.1007/s00170-005-2514-3

    Article  Google Scholar 

  19. Hofmeister W, Griffith M (2001) Solidification in direct metal deposition by LENS processing. JOM 53:30–34. doi:10.1007/s11837-001-0066-z

    Article  Google Scholar 

  20. Wang L, Felicelli SD, Craig JE (2007) Thermal modeling and experimental validation in the LENS TM process. Proc. 2007 Solid Free. Fabr Symp The University of Texas in Austin, Texas 100–111

  21. Yu J, Lin X, Wang J et al (2010) Mechanics and energy analysis on molten pool spreading during laser solid forming. Appl Surf Sci 256:4612–4620. doi:10.1016/j.apsusc.2010.02.060

    Article  Google Scholar 

  22. Michael Vollmer K-PM (2010) Infrared thermal imaging: fundamentals, research and applications. Wiley-VCH Verlag GmbH and Co. KGaA Boschtr. 12 69469 Weinheim Germany

  23. Sadiq H,Wong MB, Zhao X-L, Al-Mahaidi R (2011) Effect of high temperature oxidation on the emissivity of steel. Proceedings of the 1st World Congress on Advances in Structural Engineering and Mechanics (ASEM'11+), Seoul, Korea, 18–22 September 2011, pp. 3839–3849

  24. Felice R (2008) Pyrometry for liquid metals. Advanced Materials and Processes, Volume 166, Issue 7, July 2008 (ASM International) pp. 31–33

  25. Heyn E (1903) Short reports from the Metallurgical Laboratory of the Royal Mechanical and Testing Institute of Charlottenburg. Metallographist 5:37–64

    Google Scholar 

  26. Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC, Florida

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Farshidianfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshidianfar, M.H., Khajepour, A. & Gerlich, A. Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 82, 1173–1186 (2016). https://doi.org/10.1007/s00170-015-7423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7423-5

Keywords

Navigation