Skip to main content

Advertisement

Log in

Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aluminum/graphite (Al/Gr) composites have been used as self-lubricating materials due to the superior lubricating effect of graphite during sliding. This paper summarizes various tribological aspects of self-lubricating aluminum composites. The influence of various factors such as (a) material factors, graphite size and volume fraction, and (b) mechanical factors, applied load and sliding speed on the tribological properties of self-lubricating aluminum composites, is discussed. Furthermore, the tribological properties of self-lubricating composites as a function of these parameters and the active wear mechanism involved in various systems are discussed. Bringing self-lubricating composites into different operating systems is a solution to reduce the use of external toxic petroleum-based lubricants in sliding contacts in a way to help the environment and reduce energy dissipation in industrial components for strategies toward sustainability and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menezes PL, Sudeep PI, Michael N, Satish VK, Michael RL (2013) Tribology for Scientists and Engineers. Springer, New York

  2. Rohatgi PK, Meysam T-K, Emad O, Michael RL, Pradeep LM (2013) Tribology of metal matrix composites, in Tribology for scientists and engineers. Springer, New York, pp 233–268

  3. Menezes PL, Michael N, Satish VK, Michael RL (2013) Friction and wear, in tribology for scientists and engineers. Springer, New York, pp 43–91

  4. Alahelisten A et al (1993) On the wear of aluminium and magnesium metal matrix composites. Wear 165(2):221–226

    Article  Google Scholar 

  5. Föhl J, Weissenberg T, Wiedemeyer J (1989) General aspects for tribological applications of hard particle coatings. Wear 130(2):275–288

    Article  Google Scholar 

  6. Alpas A, Zhang J (1994) Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metall Mater Trans A 25(5):969–983

    Article  Google Scholar 

  7. Zhou R, Jiang Y, Lu D (2003) The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear 255(1):134–138

    Article  Google Scholar 

  8. Dong S, Tu J, Zhang X (2001) An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A 313(1):83–87

    Article  Google Scholar 

  9. Diler EA, Ipek R (2013) Main and interaction effects of matrix particle size, reinforcement particle size and volume fraction on wear characteristics of Al–SiC < sub > p</sub > composites using central composite design. Compos Part B 50:371–380

    Article  Google Scholar 

  10. Kumar S, Balasubramanian V (2010) Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiC < sub > p</sub > P/M composites—a statistical analysis. Tribol Int 43(1):414–422

    Article  MathSciNet  Google Scholar 

  11. Karamış M et al (2012) The effects of different ceramics size and volume fraction on wear behavior of Al matrix composites (for automobile cam material). Wear 289:73–81

    Article  Google Scholar 

  12. Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A (2009) Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A 500:87.91

    Article  Google Scholar 

  13. Ghasemi-Kahrizsangi A, Kashani-Bozorg SF (2012) Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Technol 209:15–22

    Article  Google Scholar 

  14. Sharma SC (2001) The sliding wear behavior of Al6061–garnet particulate composites. Wear 249:1036–1045

    Article  Google Scholar 

  15. Rohatgi PK et al (2011) Tribological behavior of aluminum micro-and nano-composites. Int J Aerosp Innov 3(3):153–162

    Article  MathSciNet  Google Scholar 

  16. Moghadam AD et al (2014) Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM 66(6):1–10

    MathSciNet  Google Scholar 

  17. Basavarajappa S et al (2007) Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012

    Article  Google Scholar 

  18. Wilson S, Alpas A (1997) Wear mechanism maps for metal matrix composites. Wear 212(1):41–49

    Article  Google Scholar 

  19. Deuis RL, Subramanian C, Yellup JM (1997) Dry sliding wear of aluminium composites—a review. Compos Sci Technol 57:415–435

    Article  Google Scholar 

  20. Hosking F et al (1982) Composites of aluminium alloys: fabrication and wear behaviour. J Mater Sci 17(2):477–498

    Article  MathSciNet  Google Scholar 

  21. Seeman M et al (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48(5–8):613–624

    Article  Google Scholar 

  22. Rao R et al (2013) Dry sliding wear maps for AA7010 (Al–Zn–Mg–Cu) aluminium matrix composite. Tribol Int 60:77–82

    Article  Google Scholar 

  23. Mondal DP, Das S (2006) High stress abrasive wear behaviour of aluminium hard particle composites: effect of experimental parameters, particle size and volume fraction. Tribol Int 39(6):470–478

    Article  Google Scholar 

  24. Rohatgi, PK, et al (2013) Synthesis and properties of metal matrix nanocomposites (MMNCS), syntactic foams, self lubricating and self‐healing metals. in PRICM: 8 pacific rim International Congress on Advanced Materials and Processing. John Wiley

  25. Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17

    Article  Google Scholar 

  26. Reboul M, Baroux B (2011) Metallurgical aspects of corrosion resistance of aluminium alloys. Mater Corros 62(3):215–233

    Article  Google Scholar 

  27. Molina J-M et al (2008) Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles. Scr Mater 58(5):393–396

    Article  Google Scholar 

  28. Recoules V et al (2002) Electrical conductivity of hot expanded aluminum: experimental measurements and ab initio calculations. Phys Rev E 66(5):056412

    Article  Google Scholar 

  29. LI GC et al (2012) Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process. Trans Nonferrous Metals Soc China 22(5):1112–1117

    Article  Google Scholar 

  30. Kumar GV, Rao C, Selvaraj N (2011) Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. J Miner Mater Charact Eng 10(01):59

    Google Scholar 

  31. Kathiresan M, Sornakumar T (2010) Friction and wear studies of die cast aluminum alloy-aluminum oxide-reinforced composites. Ind Lubr Tribol 62(6):361–371

    Article  Google Scholar 

  32. Srivastava S et al (2012) Study of the wear and friction behavior of immiscible as cast-Al-Sn/Graphite composite. Int J of Mod Eng Res 2(2):25–42

    Google Scholar 

  33. Sajjadi SA, Zebarjad SM (2014) Microstructural analysis and mechanical properties of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A 607:81–88

    Article  Google Scholar 

  34. Knowles A et al (2014) Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Compd 615:S401–S405

    Article  Google Scholar 

  35. Yamaguchi M et al (2014) Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater Sci Eng A 604:9–17

    Article  Google Scholar 

  36. Liu B et al (2014) Study on the load partition behaviors of high particle content B4C/Al composites in compression. J Compos Mater 48(3):355–364.37

    Article  Google Scholar 

  37. Huang B et al (2014) Study on friction and wear behaviors of aluminium matrix composites reinforced with in situ formed TiB2 particles. Adv Mater Res 900:794–797

    Article  Google Scholar 

  38. Gudlur P et al (2014) On characterizing the mechanical properties of aluminum–alumina composites. Mater Sci Eng A 590:352–359

    Article  Google Scholar 

  39. Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al < sub > 2</sub > O < sub > 3</sub>/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19

    Article  Google Scholar 

  40. Murali M, Sambathkumar M, Saravanan MS (2014) Micro structural and mechanical properties of AA 7075/Tio < sub > 2</sub > in situ composites. Univ J Mater Sci 2(3):49–53

    Google Scholar 

  41. Nagaral M, Bharath V, Auradi V (2013) Effect of Al 2 O 3 particles on mechanical and wear properties of 6061al alloy metal matrix composites. J Mater Sci Eng 2:120

    Google Scholar 

  42. Edalati K et al (2014) Wear resistance and tribological features of pure aluminum and Al–Al < sub > 2</sub > O < sub > 3</sub > composites consolidated by high-pressure torsion. Wear 310(1):83–89

    Article  Google Scholar 

  43. Subramanian RS (2014) Studies on mechanical and tribological behaviour of particulate aluminium metal matrix composites

  44. Shanmughasundaram P, Subramanian R (2013) Wear behaviour of eutectic Al-Si alloy-graphite composites fabricated by combined modified two-stage stir casting and squeeze casting methods. Adv Mater Sci Eng 2013:1–8

    Article  Google Scholar 

  45. Goto H, Suciu CV, Inokuchi T (2009) Friction and wear properties of aluminum-silicon alloy impregnated graphite composite (ALGR-MMC) under lubricated sliding conditions. Tribol Trans 52:331–345

    Article  Google Scholar 

  46. Tabandeh-Khorshid M, Jenabali-Jahromi SA, Moshksar MM (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31(8):3880–3884

    Article  Google Scholar 

  47. Rohatgi P, Surappa M (1984) Deformation of graphite during hot extrusion of cast aluminum-silicon-graphite particle composites. Mater Sci Eng 62(2):159–162

    Article  Google Scholar 

  48. Rao AKP et al (2006) Microstructural and wear behavior of hypoeutectic Al–Si alloy (LM25) grain refined and modified with Al–Ti–C–Sr master alloy. Wear 261(2):133–139

    Article  Google Scholar 

  49. Dwivedi DK (2006) Wear behaviour of cast hypereutectic aluminium silicon alloys. Mater Des 27(7):610–616

    Article  Google Scholar 

  50. Chen M, Perry T, Alpas AT (2007) Ultra-mild wear in eutectic Al–Si alloys. Wear 263(1):552–561

    Article  Google Scholar 

  51. Vencl A, Bobić I, Mišković Z (2008) Effect of thixocasting and heat treatment on the tribological properties of hypoeutectic Al–Si alloy. Wear 264(7):616–623

    Article  Google Scholar 

  52. Bai B, Biswas S (1987) Characterization of dry sliding wear of Al-Si alloys. Wear 120(1):61–74

    Article  Google Scholar 

  53. Menezes PL, Kailas SV (2009) Role of surface texture of harder surface on subsurface deformation. Wear 266(1):103–109

    Article  Google Scholar 

  54. Menezes PL, Kailas SV (2008) Subsurface deformation and the role of surface texture—a study with Cu pins and steel plates. Sadhana 33(3):191–201

    Article  Google Scholar 

  55. Dautzenberg J, Zaat J (1973) Quantitative determination of deformation by sliding wear. Wear 23(1):9–19

    Article  Google Scholar 

  56. Elmadagli M, Perry T, Alpas AT (2007) A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262(1–2):79–92

    Article  Google Scholar 

  57. Dorri Moghadam A et al (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B 77:402–420

    Article  Google Scholar 

  58. Omrani E et al (2015) Mechanical and tribological properties of self-lubricating bio-based carbon-fabric epoxy composites made using liquid composite molding. Tribol Int. doi:10.1016/j.triboint.2015.06.007

    Google Scholar 

  59. Clauss FJ (2012) Solid lubricants and self-lubricating solids.Elsevier

  60. Deaquino-Lara R et al (2015) Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion. Mater Des 67:224–231

    Article  Google Scholar 

  61. Baradeswaran A, Elaya Perumal A (2015) Effect of graphite on tribological and mechanical properties of AA7075 composites. Tribol Trans 58(1):1–6

    Article  Google Scholar 

  62. Zeren A (2015) Effect of the graphite content on the tribological properties of hybrid Al/SiC/Gr composites processed by powder metallurgy. Ind Lubr Tribol 67(3):262–268

    Article  Google Scholar 

  63. Baradeswaran A, Perumal E (2014) Wear and mechanical characteristics of Al 7075/graphite composites. Compos Part B 56:472–476

    Article  Google Scholar 

  64. Baradeswaran A, Perumal AE (2014) Study on mechanical and wear properties of Al 7075/Al2O3/Graphite hybrid composites. Compos Part B 56:464–471

    Article  Google Scholar 

  65. Ravindran P et al (2013) Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram Int 39(2):1169–1182

    Article  Google Scholar 

  66. Wu LL et al (2013) Wear resistance of graphite/aluminium composites that prepared by stirring casting. Adv Mater Res 683:333–338, Trans Tech Publ

    Article  Google Scholar 

  67. Menezes PL et al. (2013) Self-lubricating behavior of graphite-reinforced composites, in tribology for scientists and engineers. Springer 341–389

  68. Menezes PL, Rohatgi PK, Lovell MR (2012) Self-lubricating behavior of graphite reinforced metal matrix composites, in green tribology. Springer 445–480

  69. Radhika N et al (2012) Dry sliding wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites. Ind Lubr Tribol 64(6):359–366

    Article  MathSciNet  Google Scholar 

  70. Radhika N, Subramanian R, Prasat SV (2011) Tribological behaviour of aluminium/alumina/graphite hybrid metal matrix composite using taguchi’s techniques. J Miner Mater Charact Eng 10(05):427

    Google Scholar 

  71. Mahdavi S, Akhlaghi F (2011) Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method. Tribol Lett 44(1):1–12

    Article  Google Scholar 

  72. Rajaram G, Kumaran S, Rao TS (2011) Fabrication of Al–Si/graphite composites and their structure–property correlation. J Compos Mater 45(26):2743–2750

    Article  Google Scholar 

  73. Baradeswaran A, Elayaperumal A (2011) Wear characteresitic of Al6061 reinforced with graphite under different loads and sppeds. Adv Mater Res 287–290:998–1002

    Article  Google Scholar 

  74. Suresha S, Sridhara BK (2010) Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates. Compos Sci Technol 70(11):1652–1659

    Article  Google Scholar 

  75. Akhlaghi F, Zare-Bidaki A (2009) Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method. Wear 266(1–2):37–45

    Article  Google Scholar 

  76. Jinfeng L et al (2009) Effect of graphite paticle reinforcment on dry sliding wear of SiC/Gr/Al composites. Rare Metal Mater Eng 38(11):1894–1898

    Article  Google Scholar 

  77. Fuentes R et al (2003) Wear behavior of a self-lubricating aluminum/graphite composite prepared by powder metallurgy. Ind Lubr Tribol 55(4):157–161

    Article  Google Scholar 

  78. Guo MLT, Tsao C-YA (2000) Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Compos Sci Technol 60(1):65–74

    Article  Google Scholar 

  79. Ames W, Alpas A (1995) Wear mechanisms in hybrid composites of graphite-20 Pct SiC in A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg). Metall Mater Trans A 26(1):85–98

    Article  Google Scholar 

  80. Reeves CJ et al. (2013) Tribology of solid lubricants, in tribology for scientists and engineers. Springer 447–494

  81. Mahdavi S, Akhlaghi F (2011) Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites. J Mater Sci 46(24):7883–7894

    Article  Google Scholar 

  82. Saheb DA (2011) Aluminum silicon carbide and aluminum graphite particulate composites. ARPN J Eng and Appl Sci 6(10)

  83. Shams SS, El-Hajjar RF (2013) Effects of scratch damage on progressive failure of laminated carbon fiber/epoxy composites. Int J Mech Sci 67:70–77

    Article  Google Scholar 

  84. Oh S-I et al (2012) Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. J Alloys Compd 542(25):111

    Article  Google Scholar 

  85. Nayeb-Hashemi H, Seyyedi J (1989) Study of the interface and its effect on mechanical properties of continuous graphite fiber-reinforced 201 aluminum. Metall Trans A 20(4):727–739

    Article  Google Scholar 

  86. Kiran T et al (2015) Effect of heat treatment on tribological behavior of zinc aluminum alloy reinforced with graphite and SIC particles for journal bearing. Ind Lubr Tribol 67(4):292–300

    Article  Google Scholar 

  87. Mitrović S et al (2012) Tribological potential of hybrid composites based on zinc and aluminium alloys reinforced with SiC and graphite particles. Tribol Ind 34(4):177–185

    Google Scholar 

  88. Kestursatya M, Kim J, Rohatgi P (2001) Friction and wear behavior of a centrifugally cast lead-free copper alloy containing graphite particles. Metall Mater Trans A 32(8):2115–2125

    Article  Google Scholar 

  89. Rohatgi P, Pai B (1980) Seizure resistance of cast aluminium alloys containing dispersed graphite particles of various sizes. Wear 59(2):323–332

    Article  Google Scholar 

  90. Rohatgi P, Pai B (1979) Seizure resistance of cast aluminum alloys containing dispersed graphite particles of different sizes. J Tribol 101(3):376–380

    Google Scholar 

  91. Barekar N et al (2009) Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology. J Mater Eng Perform 18(9):1230–1240

    Article  Google Scholar 

  92. Archard JF, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc Lond A Math Phys Sci 236(1206):397–410

    Article  Google Scholar 

  93. Prasad B, Dan T, Rohatgi P (1987) Pressure-induced improvement in interfacial bonding between graphite and the aluminium matrix in graphitic-aluminium particle composites. J Mater Sci Lett 6(9):1076–1078

    Article  Google Scholar 

  94. Vedula M, Pangborn R, Queeney R (1988) Fibre anisotropic thermal expansion and residual thermal stress in a graphite/aluminium composite. Composites 19(1):55–60

    Article  Google Scholar 

  95. Rohatgi P et al (1976) Improved damping capacity and machinability of graphite particle-aluminum alloy composites. Mater Sci Eng 26(1):115–122

    Article  MathSciNet  Google Scholar 

  96. Rohatgi P, Ray S, Liu Y (1992) Tribological properties of metal matrix-graphite particle composites. Int Mater Rev 37:129–152

    Article  Google Scholar 

  97. Kurita H et al (2015) Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos A: Appl Sci Manuf 73:125–131

    Article  Google Scholar 

  98. Akhlaghi F, Pelaseyyed SA (2004) Characterization of aluminum/graphite particulate composites synthesized using a novel method termed “in-situ powder metallurgy”. Mater Sci Eng A 385(1–2):258–266

    Article  Google Scholar 

  99. Hayajneh MT, Hassan AM, Mayyas AT (2009) Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J Alloys Compd 478(1):559–565

    Article  Google Scholar 

  100. Akhlaghi F, Mahdavi S (2011) Effect of the SiC content on the tribological properties of hybrid Al/Gr/SiC composites processed by in situ powder metallurgy (IPM) method. Adv Mater Res 264–265:1878–1886

    Article  Google Scholar 

  101. Chen J, Huang I (2013) Thermal properties of aluminum–graphite composites by powder metallurgy. Compos Part B 44(1):698–703

    Article  Google Scholar 

  102. Krishnan B et al (1980) Performance of an Al-Si-graphite particle composite piston in a diesel engine. Wear 60(1):205–215

    Article  MathSciNet  Google Scholar 

  103. Kulkarni SR, Sonawane P, Karnik M (2014) Effect of graphite addition on the mechanical properties of stir cast particulate aluminum metal matrix composite reinforced with alumina and silicon carbide. Appl Mech Mater 612:163–16, Trans Tech Publ

    Article  Google Scholar 

  104. Etter T et al (2004) Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process. Mater Sci Eng A 386(1):61–67

    Article  Google Scholar 

  105. Patnaik S et al (2014) Wear characteristics of aluminium-graphite composites produced by stir casting technique. J Mater Metall Eng 4(3):13–20

    Google Scholar 

  106. Dwivedi SK, Patel S (2014) Evaluation of hardness of aluminium/graphite particulate composite fabricated by stir casting route. Evaluation 3(01):26–28

    Google Scholar 

  107. So KP et al (2013) SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74:6

    Article  Google Scholar 

  108. Lim J-Y et al (2012) Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater Sci Eng A 556:337

    Article  Google Scholar 

  109. Rack H (1988) Advanced materials and manufacturing processes, 3.

  110. Flores-Zamora M et al (2007) Aluminum–graphite composite produced by mechanical milling and hot extrusion. J Alloys Compd 434:518–521

    Article  Google Scholar 

  111. Yang JB et al (2004) The tribological characteristics of A356.2Al alloy/Gr(p) composites. Wear 257:941–952

    Article  Google Scholar 

  112. Das S, Prasad V, Ramachandran T (1989) Microstructure and wear of cast (Al-Si alloy)-graphite composites. Wear 133:173–187

    Article  Google Scholar 

  113. Roy M et al (1992) The effect of participate reinforcement on the sliding wear behavior of aluminum matrix composites. Metall Trans A 23(10):2833–2847

    Article  Google Scholar 

  114. Van Acker K et al (2005) Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear 258(1):194–202

    Article  Google Scholar 

  115. Tokisue H, Abbaschian G (1978) Friction and wear properties of aluminum-particulate graphite composites. Mater Sci Eng 34(1):75–78

    Article  Google Scholar 

  116. Sannino AP, Rack HJ (1995) Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear 189(1–2):1–19

    Article  Google Scholar 

  117. Wei Y et al (2011) Characterizations of DLC/MAO composite coatings on AZ80 magnesium alloy. Acta Metall Sin 47(12):1535–1540

    Google Scholar 

  118. Hocheng H et al (1997) Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Compos A: Appl Sci Manuf 28(9–10):883–890

    Article  Google Scholar 

  119. Prasad BK, Das S (1991) The significance of the matrix microstructure on the solid lubrication characteristics in aluminum alloys. Mater Sci Eng A 144:229–235

    Article  Google Scholar 

  120. Aylor DM, Moran PJ (1985) Effect of reinforcement on the pitting behavior of aluminum‐base metal matrix composites. J Electrochem Soc 132(6):1277–1281

    Article  Google Scholar 

  121. Gore K, Charles J (1974) Met Technol 1:279

  122. Riahi AR, Alpas AT (2001) The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear 251(1–12):1396–1407

    Article  Google Scholar 

  123. Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17:445–453

    Article  Google Scholar 

  124. Altunpak Y, Ay M, Aslan S (2012) Drilling of a hybrid Al/SiC/Gr metal matrix composites. Int J Adv Manuf Technol 60(5–8):513–517

    Article  Google Scholar 

  125. Song J, Han K (1997) Mechanical Properties and solid lubricant wear behavior of Al/Al2O3/C hybrid metal matrix composites fabricated by squeez casting method. J Compos Mater 31(4):316–344

    Article  Google Scholar 

  126. Basavarajappa S et al (2006) Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J Mater Eng Perform 15(6):668–674

    Article  Google Scholar 

  127. Ravindran P et al (2013) Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Mater Des 51:448–456

    Article  Google Scholar 

  128. Don J (1982) Unlubricated friction and wear in the Cu-Be. PhD thesis: Ohio State University

  129. Chen Z et al (2000) Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method. Metall Mater Trans A 31(8):1959–1964

    Article  Google Scholar 

  130. Tjong SC (2007) Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9(8):639–652

    Article  Google Scholar 

  131. Thostenson ET, Li C, Chou T-W (2005) Nanocomposites in context. Compos Sci Technol 65(3):491–516

    Article  Google Scholar 

  132. He F, Han Q, Jackson MJ (2008) Nanoparticulate reinforced metal matrix nanocomposites–a review. Int J Nanopart 1(4):301–309

    Article  Google Scholar 

  133. Singh J, Narang D, Batra NK (2013) Experimental investigation of mechanical and tribological properties of Aa-SiC and Al-Gr metal matrix composite. Int J Eng Sci Technol 5(6):1205–1210

    Google Scholar 

  134. Shivanath R, Sengupta P, Eyre T (1977) Wear of aluminium-silicon alloy. Br Foundryman 70(12):349–356

    Google Scholar 

  135. Eyre T (1980) Wear of aluminium alloys. Microstruct Sci 8:141–151

    Google Scholar 

  136. Babić M et al (2013) Wear properties of A356/10SiC/1Gr hybrid composites in lubricated sliding conditions. Tribol Ind 35(2):148–154

    Google Scholar 

  137. Basavarajappa S, Chandramohan Dry G (2005) Sliding wear behaviour of hybrid metal matrix composites. Mater Sci 11(3):253–257

    Google Scholar 

  138. Singh S (2003) Metal matrix composites: a potential material for futuristic automotive. SAE Technical Paper 26–0038

  139. Kim M et al. (2011) Development of cast-forged knuckle using high strength aluminum alloy. SAE Technical Paper

  140. Sherman AM, Sklad PS (2002) Collaborative development of lightweight metal and alloys for automotive applications. SAE Technical Paper

  141. Hunt WH, Miracle DB (2001) Automotive applications of metal-matrix composites

  142. Miracle DB Hunt W (2004) Automotive applications of metal-matrix composites. Aluminium Consultant Group Inc 1029–1032

  143. Saravana Bhavan K, Suresh S, Vettivel S Synthesis, characterization and mechanical behavior of nickel coated graphite on aluminum matrix composite

  144. Surappa M (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2):319–334

    Article  Google Scholar 

  145. Kevorkijan V (2002) Development of Al MMC composites for automotive industry

  146. Varuzan K (2002) Development of Al MMC composites for automotive industry. Yugoslav Association of Metallurgical Engineers YAME

  147. Eliasson J, Sandström R (1995) Applications of aluminium matrix composites. in key engineering materials. Trans Tech Publ

  148. Rice S, Nowotny H, Wayne S (1981) Characteristics of metallic subsurface zones in sliding and impact wear. Wear 74(1):131–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emad Omrani or Afsaneh Dorri Moghadam.

Additional information

Emad Omrani and Afsaneh Dorri Moghadam contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omrani, E., Moghadam, A.D., Menezes, P.L. et al. Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review. Int J Adv Manuf Technol 83, 325–346 (2016). https://doi.org/10.1007/s00170-015-7528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7528-x

Keywords

Navigation