Skip to main content
Log in

3D printing of shape memory polymer for functional part fabrication

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article presents a novel method of shape memory polymer (SMP) processing for additive manufacturing, in particular, fused-deposition modeling (FDM). Critical extrusion process parameters have been experimented to determine an appropriate set of parameter values so that good-quality SMP filament could be made for FDM. In the FDM process, effects of different printing parameters such as extruder temperature and scanning speed on object printing quality are also studied. In all the process studies, we aim to achieve good-quality parts by evaluating part density, tensile strength, dimensional accuracy, and surface roughness. Based on these studies, sample SMP models have been successfully built. Due to the thermal sensitive nature of the printed SMP parts, they can potentially be used as fasteners in active assembly/disassembly, smart actuators, deployable structures for aero-space applications, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications. World Scientific, Singapore

    Book  Google Scholar 

  2. Espalin D, Muse DW, MacDonald E, Wicker RB (2014) 3D Printing multifunctionality: structures with electronics. Int J Adv Manuf Technol 72(5–8):963–978

    Article  Google Scholar 

  3. Bikas H, Stavropoulos P, Chryssolouris G (2015) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 1–17

  4. Melnikova R, Ehrmann A, Finsterbusch K (2014) 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conf Ser Mater Sci Eng 62(1):012018, IOP Publishing

    Article  Google Scholar 

  5. McNulty TF, Mohammadi F, Bandyopadhyay A, Shanefield DJ, Danforth SC, Safari A (1998) Development of a binder formulation for fused deposition of ceramics. Rapid Prototyp J 4(4):144–150

    Article  Google Scholar 

  6. Masood SH, Song WQ (2005) Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process. Assem Autom 25(4):309–315

    Article  Google Scholar 

  7. Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2014) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3Dd printing process. J Electron Mater 1–7

  8. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720–1763

    Article  Google Scholar 

  9. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558

    Article  Google Scholar 

  10. Takashima K, Rossiter J, Mukai T (2010) McKibben artificial muscle using shape-memory polymer. Sensors Actuators A Phys 164(1):116–124

    Article  Google Scholar 

  11. Takashima K, Noritsugu T, Rossiter J, Guo S, Mukai T (2011) Development of curved type pneumatic artificial rubber muscle using shape-memory polymer. SICE Annual Conference (SICE). Proc IEEE 1691–1695

  12. Takashima K, Sugitani K, Morimoto N, Sakaguchi S, Noritsugu T, Mukai T (2014) Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire. Smart Mater Struct 23(12):125005

    Article  Google Scholar 

  13. Rossiter J, Takashima K, Scarpa F, Walters P, Mukai T (2014) Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Mater Struct 23(4):045007

    Article  Google Scholar 

  14. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg Med 30(1):1–11

    Article  Google Scholar 

  15. Small W IV, Wilson T, Benett W, Loge J, Maitland D (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13(20):8204–8213

    Article  Google Scholar 

  16. Wilson TS, Small IV W, Benett WJ, Bearinger JP, Maitland DJ (2005) Shape memory polymer therapeutic devices for stroke. Optics East 2005, International Society for Optics and Photonics, 60070R-60070R

  17. Small W IV, Wilson TS, Buckley PR, Benett WJ, Loge JM, Hartman J, Maitland DJ (2007) Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device. IEEE Trans Biomed Eng 54(9):1657–1666

    Article  Google Scholar 

  18. Chen S, Hu J, Zhuo H, Zhu Y (2008) Two-way shape memory effect in polymer laminates. Mater Lett 62(25):4088–4090

    Article  Google Scholar 

  19. Tobushi H, Hayashi S, Sugimoto Y, Date K (2009) Two-way bending properties of shape memory composite with SMA and SMP. Materials 2(3):1180–1192

    Article  Google Scholar 

  20. Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, Qi HJ (2011) Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 20(6):065010

    Article  Google Scholar 

  21. Imai S, Sakurai K (2013) An actuator of two-way behavior by using two kinds of shape memory polymers with different Tgs. Precis Eng 37(3):572–579

    Article  Google Scholar 

  22. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  Google Scholar 

  23. Rossiter J, Walters P, Stoimenov B (2009) Printing 3D dielectric elastomer actuators for soft robotics. SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 72870H–72870H

  24. Shaffer S, Yang K, Vargas J, Di Prima MA, Voit W (2014) On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer 55(23):5969–5979

    Article  Google Scholar 

  25. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Article  Google Scholar 

  26. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8):1852–1856

    Article  Google Scholar 

  27. Hines L, Arabagi V, Sitti M (2012) Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot. IEEE Trans Robot 28(4):987–990

    Article  Google Scholar 

  28. Everhart MC, Nickerson DM, Hreha RD (2006) High-temperature reusable shape memory polymer mandrels. Smart structures and materials, International Society for Optics and Photonics, 61710K–61710K

  29. Taya M, Liang Y, Namli OC, Tamagawa H, Howie T (2013) Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite. Smart Mater Struct 22(10):105003

    Article  Google Scholar 

  30. Chiodo JD, Billett EH, Harrison DJ (1999) Preliminary investigations of active disassembly using shape memory polymers. Environmentally Conscious Design and Inverse Manufacturing, Proceedings, EcoDesign’99: First International Symposium On. IEEE 590–596

  31. Carrell J, Tate D, Wang S, Zhang HC (2011) Shape memory polymer snap-fits for active disassembly. J Clean Prod 19(17):2066–2074

    Article  Google Scholar 

  32. SMP Technologies (2009) Homepage for technical information: http://www2.smptechno.com/en/tech/

  33. Schmidt C, Chowdhury AS, Neuking K, Eggeler G (2011) Studies on the cycling, processing and programming of an industrially applicable shape memory polymer Tecoflex®(or TFX EG 72D). High Perform Polym 23(4):300–307

    Google Scholar 

  34. Voit W, Ware T, Gall K (2010) Radiation crosslinked shape-memory polymers. Polymer 51(15):3551–3559

    Article  Google Scholar 

  35. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444(1):227–235

    Article  Google Scholar 

  36. Kamal MR, Kenig S (1972) The injection molding of thermoplastics part I: theoretical model. Polym Eng Sci 12(4):294–301

    Article  Google Scholar 

  37. Kamal MR, Kenig S (1972) The injection molding of thermoplastics part II: experimental test of the model. Polym Eng Sci 12(4):302–308

    Article  Google Scholar 

  38. SMP Technologies (2009) Homepage for product information: http://www2.smptechno.com/en/smp/

  39. Hayashi S (1992) U.S. Patent No. 5,145,935. Washington, DC: U.S. Patent and Trademark Office

  40. Chen Z, Turng LS (2005) A review of current developments in process and quality control for injection molding. Adv Polym Technol 24(3):165–182

    Article  Google Scholar 

  41. Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67(9–12):2727–2742

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, Y., Wei, Y. et al. 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Technol 84, 2079–2095 (2016). https://doi.org/10.1007/s00170-015-7843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7843-2

Keywords

Navigation