Skip to main content

Advertisement

Log in

A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic vibration assisted grinding is an advanced method for machining difficult-to-process materials such as SiCp/Al composites. This paper presents a mechanics model for predicting grinding forces in ultrasonic vibration assisted grinding of SiCp/Al composites. It consists of side grinding force model and end grinding force model. In side grinding force model, the major components are the normal force and tangential force in which the analytical expressions for the chip formation force based on Rayleigh’s probability density function, the frictional force, and the particle fracture force based on Griffith theory are established, respectively. In contrast, the axial force developed based on the indentation theory is the major component in end grinding force model. The coefficients in the proposed grinding force model were obtained through two groups of orthogonal experiments. Based on the mechanics prediction model, the relationship between grinding forces and process variables were predicted. At last, two groups of single factor experiments were conducted to verify the proposed grinding force model and experimental results were found to agree well with predicted results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Lin B, Zhang XF (2014) Research on the system matching model in ultrasonic vibration-assisted grinding. Int J Adv Manuf Technol 70(1–4):449–458. doi:10.1007/s00170-013-5269-2

    Article  MathSciNet  Google Scholar 

  2. Shen XH, Zhang JH, Xing DLX, Zhao YF (2012) A study of surface roughness variation in ultrasonic vibration-assisted milling. Int J Adv Manuf Technol 58(5–8):553–561. doi:10.1007/s00170-011-3399-y

    Article  Google Scholar 

  3. Bertsche E, Ehmann K, Malukhin K (2012) An analytical model of rotary ultrasonic milling. Int J Adv Manuf Technol 65(9–12):1705–1720. doi:10.1007/s00170-012-4292-z

    Google Scholar 

  4. Zhou M, Zhao P (2016) Prediction of critical cutting depth for ductile-brittle transition in ultrasonic vibration assisted grinding of optical glasses. Int J Adv Manuf Technol:1–10. doi:10.1007/s00170-015-8274-9

  5. Mahaddalkar PM, Miller MH (2014) Force and thermal effects in vibration-assisted grinding. Int J Adv Manuf Technol 71(5–8):1117–1122. doi:10.1007/s00170-013-5537-1

    Article  Google Scholar 

  6. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53(1):9–94. doi:10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  7. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tool Manuf 46(14):1795–1803. doi:10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  8. Davim JP (2007) Application of Merchant theory in machining particulate metal matrix composites. Mater Des 28(10):2684–2687. doi:10.1016/j.matdes.2006.10.015

    Article  Google Scholar 

  9. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tool Manuf 49(9):690–700. doi:10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  10. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103. doi:10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  11. Du JG, Li JG, Yao YX, Hao ZP (2014) Prediction of cutting forces in mill-grinding SiCp/Al composites. Mater Manuf Process 29(3):314–320. doi:10.1080/10426914.2013.864402

    Article  Google Scholar 

  12. Ghandehariun A, Hussein HM, Kishawy HA (2015) Machining metal matrix composites: novel analytical force model. Int J Adv Manuf Technol 83(1):233–241. doi:10.1007/s00170-015-7554-8

    Google Scholar 

  13. Feng PF, Liang GQ, Zhang JF (2014) Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites. Ceram Int 40(7):10817–10823. doi:10.1016/j.ceramint.2014.03.073

    Article  Google Scholar 

  14. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites - part II: workpiece surface integrity. J Mater Process Technol 83(1–3):277–285. doi:10.1016/S0924-0136(98)00072-7

    Article  Google Scholar 

  15. Tang JY, Du J, Chen YP (2009) Modeling and experimental study of grinding forces in surface grinding. J Mater Process Technol 209(6):2847–2854. doi:10.1016/j.jmatprotec.2008.06.036

    Article  Google Scholar 

  16. Patnaik Durgumahanti US, Singh V, Venkateswara Rao P (2010) A new model for grinding force prediction and analysis. Int J Mach Tools Manuf 50(3):231–240. doi:10.1016/j.ijmachtools.2009.12.004

    Article  Google Scholar 

  17. Hecker RL, Liang SY, Wu XJ, Xia P, Jin DGW (2007) Grinding force and power modeling based on chip thickness analysis. Int J Adv Manuf Technol 33(5–6):449–459. doi:10.1007/s00170-006-0473-y

    Article  Google Scholar 

  18. Agarwal S, Rao PV (2013) Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding. Int J Mach Tool Manuf 65:68–78. doi:10.1016/j.ijmachtools.2012.10.006

    Article  Google Scholar 

  19. Tohgo K, Itoh T (2005) Elastic and elastic–plastic singular fields around a crack-tip in particulate-reinforced composites with progressive debonding damage. Int J Solids Struct 42(26):6566–6585. doi:10.1016/j.ijsolstr.2005.04.013

    Article  MATH  Google Scholar 

  20. Xiao XZ, Zheng K, Liao WH (2014) Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics. Int J Adv Manuf Technol 75(9–12):1263–1277. doi:10.1007/s00170-014-6216-6

    Article  Google Scholar 

  21. Zhang CL, Zhang JF, Feng PF (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69(1–4):161–170. doi:10.1007/s00170-013-5004-z

    Article  Google Scholar 

  22. Yuan ZW, Li FG, Chen B, Xue FM, Hussain MZ (2014) Further investigation of particle reinforced aluminum matrix composites by indentation experiments. J Mater Res 29(4):586–595. doi:10.1557/jmr.2014.15

    Article  Google Scholar 

  23. Yuan ZW, Li FG, Xue FM, Zhang MJ, Li J (2015) An investigation of micro-mechanical properties of Al matrix in SiC/Al composite by indentation experiments. J Mater Eng Perform 24(2):654–663. doi:10.1007/s11665-014-1350-8

    Article  Google Scholar 

  24. Yuan ZW, Li FG, Zhang P, Chen B, Xue FM (2014) Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments. Chin J Aeronaut 27(2):397–406. doi:10.1016/j.cja.2014.02.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zheng, W. A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol 87, 3211–3224 (2016). https://doi.org/10.1007/s00170-016-8726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8726-x

Keywords

Navigation